V001 / JSI

LinkedIn Facebook Twitter TikTok Instagram TV IJS Kolokviji IJS   | Arhiv novic | News Archive | Video arhiv |

Slovensko   English2024-10-23

Program

News Archive

Prof. Ingrid Milošev is this year's recepient of the prestigious international award H.H. The Uhlig Award, awarded by the learned society The Electrochemical Society based in the USA. The Award, which was awarded in 1973 in memory of this outstanding scientist in the field of corrosion, was given to Prof. Milošev for outstanding achievements in corrosion science and technology with fundamental contributions to corrosion inhibition research, surface treatment and corrosion of biomaterials. Her research focuses on corrosion processes and corrosion protection of technological and biomedical materials, including corrosion inhibitors, sol-gel coatings, conversion and inorganic coatings. Dr. Milošev has published 240 articles in peer-reviewed journals and nine book chapters with more than 13,300 citations (h-index 58). At the awarding ceremony, Prof. Milošev gave an invited lecture entitled "The Remarkable Versatility of Copper: From its Corrosion Resistance to Antibacterial Properties".

News Archive

Researchers from F3 and F7 Departments of the Jožef Stefan Institute in collaboration with researchers from the Faculty of Mechanical Engineering, University of Ljubljana and Coimbra University (Portugal) investigated in the picosecond excitation regime the photoacoustic (PA) response of composite material made of graphene or graphene decorated with gold nanoparticles (AuNP) and polydimethylsiloxane (PDMS). AuNP attached to graphene improve the dispersibility of the flakes in the polymer, increase the surface area in contact with the polymer, and prevent the re-adhesion. All of this leads to a better intercalation of the polymer with the graphene flakes and a more uniform and efficient generation of PA waves. By using picosecond excitation of the graphene-based composite, we measured PA waves with bandwidths of 70 MHz and 130 MHz at -6 dB and -20 dB. The peak pressures of the PA waves achieve values > 5 MPa. The bandwidth can be further increased to values of 85 MHz at -6 dB and 135 MHz at -20 dB by decorating the graphene with AuNP. The results of the research were published in the journal Nano Energy and EU patent was granted.

News Archive

Feynman diagrams are an important tool in modern theoretical physics, with applications in solid-state, high-energy physics, and quantum chemistry. Doc. dr. Denis Golež from the Department of Theoretical Physics and his colleagues from the Flatiron Institute (USA), Berkeley University (USA) and the University of Örebro (Sweden) discovered a new approach for using Feynman diagrams in quantum materials, published in Physical Review X. Higher-order Feynman diagrams are challenging in strongly correlated quantum systems due to their computational complexity. This study uncovered a 'hidden structure' within these high-order diagrams based on the separability of quantum propagators, see figure, significantly reducing computational demands. The algorithm was applied to non-perturbative problems where traditional quantum Monte Carlo methods would fail, offering a promising new tool for diagrammatic computations. This theoretical advancement is expected to greatly facilitate the discovery of new quantum collective states, such as excitonic magnetism and spin glasses.

News Archive

Researchers from the Department of Condensed Matter Physics (Venkata. S. R. Jampani, Miha Škarabot and Miha Ravnik) in collaboration with colleagues from Universities of Ljubljana, Sorbonne, Siegen and Luxembourg reported on the synthesis of water-based templating nanoscale thin films in Advanced Materials. These films are made from superglue (cyanoacrylate monomers) vapours and grow with a controlled rate of several nanometres per minute. Superglues (cyanoacrylate monomers) are otherwise well-known for their rapid reactivity, forming polycyanoacrylate chains that bond materials instantly. On the contrary, in this report the modulated polymerization of cyanoacrylates was introduced, which enable controlled growth of thin polymer films. Furthermore, the shape and color of the film are precisely controlled by the polymerization kinetics, wetting conditions, and/or exposure to patterned light. This study introduces simple, versatile and an eco-friendly approach analogous to existing chemical vapor deposition techniques. This approach facilitates the creation of water-templated films for gas encapsulation, liquid packaging, and in-situ chemical/biological cargo packaging.



STRATEGIC PROJECT

JSIplus


COLLOQUIA

Colloquia


INTERNATIONAL COOPERATION

International Cooperation


VIDEO ARCHIVE

Video Archive


PRINTED NEWS

Printed News   CasopIJS


GENDER EQUALITY AT JSI

Gender Equality at JSI


FOOD AT JSI

Food at JSI


JOB OPPORTUNITIES

Job Opportunities

The Jožef Stefan Institute invites interested researchers and others to joint our teams.
Posts


PHD PROGRAMMES

Postgraduate School

The JOŽEF STEFAN INTERNATIONAL POSTGRADUATE SCHOOL, in collaboration with the INSTITUTE JOŽEF STEFAN, begins enrollment for doctoral and master's degrees.

J. Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia, Telephone: +386 1 477 39 00
info@ijs.si