Ime strani: ARRSProjekti / 2017 / Feromagnetne tekočine krmiljene z električnim poljem

Feromagnetne tekočine krmiljene z električnim poljem


Nazaj na seznam za leto 2017


Oznaka in naziv projekta

J7-8267 - Feromagnetne tekočine krmiljene z električnim poljem
J7-8267 - Electrically tunable ferromagnetic liquids

Logotipi ARRS in drugih financerjev

© Javna agencija za raziskovalno dejavnost Republike Slovenije

Projektna skupina

Vodja projekta: doc. dr. Alenka Mertelj

Sodelujoča raziskovalna organizacija:

Univerza v Novi Gorici

Raziskovalci:

- Darja Lisjak

- Natan Osterman

- Sašo Gyergyek

- Mojca Vilfan

- Darko Makovec

- Matjaž Valant

- Sandra Gardonio

Vsebinski opis projekta

Magnetno in/ali električno odzivne snovi so ključne za vrsto aplikacij. Primer mehkih materialov so tekoči kristali, ki imajo močan elektro optični odziv, in jih množično uporabljamo v sodobnih zaslonih ter ferofluidi, ki se odzivajo na magnetno polje in jih uporabljamo kot tesnila, pol-aktivne dušilce, v sistemih za namestitev in kot transportne medije. Feromagnetni tekoči kristali, ki smo jih nedavno razvili na Institutu Jožef Stefan so hibridi med tekočimi kristali in ferofluidi in se odzivajo tako na električno kot na magnetno polje. V projektu se bomo osredotočili na razvoj in razumevanje mehkih materialov z veliko magnetizacijo in močnim odzivom na električno polje. Do sedaj razviti feromagnetni tekoči kristali imajo bodisi majhno magnetizacijo in močan odziv na električno polje bodisi veliko magnetizacijo in zelo šibek odziv na električno polje.

Cilj predlaganega projekta je razviti materiale, ki imajo lastnosti obeh in ki jih bomo lahko uporabili v napravah, kjer potrebujemo krmiljenje magnetizacije, npr. v nerecipročnih napravah za informacijsko tehnologijo ali v izvorih majhnih magnetnih polj.

Bibliografske reference

  • S. Odenbach, Colloidal Magnetic Fluids: Basics, Development and Application of Ferrofluids (Springer, 2009).
  • A. Mertelj, D. Lisjak, M. Drofenik, M. Čopič, Ferromagnetism in suspensions of magnetic platelets in liquid crystal. Nature. 504, 237–241 (2013).

  • A. Mertelj, N. Osterman, D. Lisjak, M. Čopič, Magneto-optic and converse magnetoelectric effects in a ferromagnetic liquid crystal. Soft Matter. 10, 9065–9072 (2014).

  • M. Shuai, A. Klittnick, Y. Shen, G. P. Smith, M. R. Tuchband, C. Zhu, R. G. Petschek, A. Mertelj, D. Lisjak, M. Čopič, J. E. Maclennan, M. A. Glaser, N. A. Clark, Spontaneous liquid crystal and ferromagnetic ordering of colloidal magnetic nanoplates. Nat. Commun. 7, 10394 (2016).

  • D. Lisjak, M. Drofenik, Chemical Substitution—An Alternative Strategy for Controlling the Particle Size of Barium Ferrite. Cryst. Growth Des. 12, 5174–5179 (2012).

  • S. H. Hu, X. Gao, Nanocomposites with Spatially Separated Functionalities for Combined Imaging and Magnetolytic Therapy. J. Am. Chem. Soc. 132 7234-7237 (2010).

  • S. Sacanna et al., Magnetic Click Colloidal Assembly. J. Am. Chem. Soc. 134 6112-6115 (2012).

  • P. Medle Rupnik, D. Lisjak, M. Čopič, A. Mertelj, Ferromagnetic liquid crystals for magnetic field visualisation. Liq. Cryst. 42, 1684–1688 (2015). Current Perspectives: Modern Microwave Materials, Journal of Magnetism and Magnetic Materials 321, 2033-2284 (2009).

  • P. N. Nge, C. I. Rogers, A. T. Woolley, Advances in Microfluidic Materials, Functions, Integration, and Applications. Chem. Rev. 113, 2550–2583 (2013).

  • O. Buluy et al. , Influence of Surface Treatment of Ferromagnetic Nanoparticles on Properties of Thermotropic Nematic Liquid Crystals. Mol. Cryst. Liq. Cryst. 560, 149–158 (2012).

  • M. F. Prodanov et al. , Thermodynamically Stable Dispersions of Quantum Dots in a Nematic Liquid Crystal. Langmuir. 29, 9301–9309 (2013).

  • J. Mirzaei, M. Urbanski, H.-S. Kitzerow, T. Hegmann, Synthesis of Liquid Crystal Silane-Functionalized Gold Nanoparticles and Their Effects on the Optical and Electro-Optic Properties of a Structurally Related Nematic Liquid Crystal. ChemPhysChem. 15, 1381–1394 (2014).

  • H. Wang et al., Broadband Tunability of Polarization-Insensitive Absorber Based on Frequency Selective Surface. Scientific Reports. 6, 23081 (2016).

  • M. Drofenik, M. Kristl, A. Žnidaršič, D. Hanžel, D. Lisjak, Hydrothermal synthesis of Ba-hexaferrite nanoparticles. J. Am. Ceram, Soc.90 2057-2061 (2007).

  • S. Ovtar, D. Lisjak, M. Drofenik, Barium hexaferrite suspensions for electrophoretic deposition. J. Col. Interfaces 337 456-463 (2009).

  • D. Lisjak, S. Ovtar, Directed assembly of BaFe12O19 Particles and the Formation of Magnetically Oriented Films. Langmuir 27, 14014-14024 (2011).

  • A. Walther, A. H. E. Müller, Janus Particles: Synthesis, Self-Assembly, Physical Properties, and Applications. Chem. Rev. 113 5104-5261 (2013). Current Perspectives: Modern Microwave Materials, Journal of Magnetism and Magnetic Materials 321, 2033-2284 (2009).

  • A. Walther, A. H. E. Müller, Janus Particles: Synthesis, Self-Assembly, Physical Properties, and Applications. Chem. Rev. 113 5104- 5261 (2013).


Nazaj na seznam projektov po letih