Ime strani: ARRSProjekti / 2023 / Plazmonični senzorji za diagnostiko poškodb DNA

Plazmonični senzorji za diagnostiko poškodb DNA

Nazaj na seznam za leto 2023


Oznaka in naziv projekta

J2-50066 Plazmonični senzorji za diagnostiko poškodb DNA
J2-50066 Plasmon-Mediated Sensors for DNA Damage Diagnostics

Logotipi ARIS in drugih sofinancerjev

© Javna agencija za raziskovalno dejavnost Republike Slovenije

Projektna skupina

Vodja projekta: dr. Vasyl Shvalya

Sodelujoče raziskovalne organizacije: Povezava na SICRIS

Sestava projektne skupine: Povezava na SICRIS

Vsebinski opis projekta

Vsebinski opis projekta

Boljša prihodnost medicinskih pripomočkov nove generacije je tesno povezana s tehnološkim napredkom naravoslovja. Zato je hitra rast visokonatančnih elektronskih analitičnih naprav na vseh področjih zdravstvenih aplikacij povečala povpraševanje po novih, prelomnih konceptih in pristopih za nanobiotehnologijo, proizvodnjo DNK cepiv, razvoj genske terapije in nanomedicino na splošno. Potreba po visokokakovostnih vhodnih podatkih in trdne zahteve po vsestranskosti, preprostosti, občutljivosti, hitrosti in učinkovitosti metode so povečale zanimanje za izboljšanje elektronskih, magnetnih in optičnih tehnik zaznavanja. Trenutne komercializirane metode ne razkrivajo velikih pričakovanj za reševanje teh izzivov v celoti. Vendar pa nanoplazmonika obljublja radikalno izboljšanje spektroskopsko vodenih optičnih analitičnih sistemov za sondiranje nevarnih patogenov (bakterije, virusi) na nanoskali, spremljanje celičnega okolja, pregled odpornosti na antibiotike, diagnostiko raka, strukturo biomakromolekul in raziskave kakovosti, cepivo na osnovi genov. raziskave, procesi mutacije DNK itd. Projekt Da Vinci predlaga nove, inovativne dodatke za zaznavanje, ki omogočajo naprednemu orodju za Ramanovo vibroskopijo, da se spopade z nastajajočimi analitičnimi izzivi biotehnologije in nanomedicine za reševanje obstoječih izzivov. Trenutne praktične omejitve Ramanove tehnike bodo premagane z uvedbo novih tipov lokaliziranih površinskih plazmonskih resonančnih nanosenzorjev, za katere se pričakuje, da bodo povečali učinkovitost sipanja in povečali občutljivost pri odkrivanju bioloških makromolekul za več vrst velikosti. Pričakuje se, da bodo rezultati generični in zlahka prevedeni na druga področja raziskav, kot so inženiring novih analitičnih sistemov za odkrivanje strupenih kemičnih metabolitov (mikotoksini), substanc za vojno uporabo (eksplozivi, spremljanje živčnih plinov) in inšpekcijski pregled kakovosti hrane (označevalci prisotnosti pesticidov in insekticidi na ravni ppb). Ne nazadnje bo Da Vinci vodil k nadaljnjemu razvoju sodelavcev projekta, do izjemne odličnosti v znanosti o plazmoničnih senzorjih nove generacije.

Osnovni podatki sofinanciranja so dostopni na spletni strani SICRIS.

Faze projekta in opis njihove realizacije

Phase 1: Specifications, Targets, Methods, Standards. Objectives: Regarding Raman spectroscopic data of DNA damage, the information is poor, and this deficiency must be resolved. Field survey is needed to define scientific gaps where improvement is needed the most. The solution to this problem starts with defining targeted technological aspects for nanoplasmonic sensors design. This work package is devoted to maintaining, optimising, and functionalising plasma synthesis techniques within a lab scale, as well as updating and selecting synthesis that enable molecule detection at nanovolumes. Special attention is turned to searching for the best combination between time, power, gas mixture, and flow. Nanoplasmonic fabrication methods based on plasma approaches will be developed to enhance the outcome of WP1 and reduce the technological risks of failure at early stages.

Phase 2: Research and Development: Common Detection Platforms Objectives: Design strategies for SERS substrates are highly dependent on the intercalation chemistry of the active materials. The most extensive research work regarding nanomaterials synthesis is gathered within WP2. The initial development of different nanoparticles and nanostructures will be addressed and distributed between the corresponding tasks. The crucial point is precise nanotexturing, developing high surface-to-volume ratio sensing platforms. Plasma system optimization will be provided with respect to selected raw materials. Different plasma synthetic methods of plasmonic nanoparticles will be studied; aiming analyte SERS detection at nanograms quantities. Exchange of technological experience will be key to success.

Phase 3: Research and Development: Sensors for Biological Targets Objectives: Adjustment of observed drawbacks for the best sensing quality. All efforts will be devoted to bridging > 10^5 enhancement factor. Post-treatment will be utilised to improve the appropriateness of SERS sensors for the detection of biochemical molecules of Sansei concern. Understanding the physical principles of light-matter interactions at a reduced scale, electron-driven phenomena, electromagnetic field distributions, nanostructure growth mechanisms, nanoparticles formation, and technological post-fabrication processing will be addressed to customise the optical response. Sensors will be tested to investigate model biological macromolecules, obtaining spectra for Raman discriminative inspection.

Phase 4: Dissemination, Communication, Exploitation, Management Objectives: Increase awareness of Sansei by all available means targeting industrial property, specific knowledge for academic and industrial communities as well as the general public, schools and open science. Evaluate the efficiency of the project and ensure its dissemination. Due to the novelty of the research, special attention is paid to intellectual property rights. This includes overall project management in terms of administrative, legal, ethical, financial, scientific and technical issues to ensure the highest quality of results and full delivery within the timeframe and budget foreseen. Monitoring progress in order to be able to take corrective action when needed


Nazaj na seznam za leto 2023