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OVERALL OBJECTIVE

Develop a milliwatt level, fixed frequency, CW THz 
source for space borne Earth and planetary remote 
sensing instruments

IMPLEMENTATION

Extend vacuum tube reflex klystron oscillator to THz 
frequencies. 



TECHNICAL APPROACH

Analyze millimeter-wave klystron performance limitations

Design THz monolithic circuit based on silicon DRIE process

Propose compatible cavity, bunching grid, repeller, output structure

Realize ultra-high current density field-emission cathode

Incorporate built-in low-voltage emitter/focusing grid with cathode

Combine drop-in cathode/grid with cavity/output coupler

Develop high vacuum sealing technique compatible with RF output

Increase power output or frequency agility through array integration



SCHEMATIC OF A SIMPLE REFLEX KLYSTRON
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MODIFICATIONS NEEDED TO REALIZE THZ MONOLITHIC DESIGN

Physical layout must be made compatible with standard MEMS processing

Including emitter, re-entrant cavity, focusing electrodes, repeller, output 
coupler, beam forming antenna

Split block construction required to allow sculpting of cavities and insertion 
of wires, focusing electrodes, emitter, repeller

Tuning & output Q controllable via simply varied geometric parameters

Current densities of existing hot cathodes must be increased dramatically



MODIFICATIONS NEEDED TO REALIZE THZ MONOLITHIC DESIGN

Cold cathode operation preferred for space operation and reduced thermal load

Cold cathode operation implies integrated emitter grids and extra beam focus

Vacuum sealing techniques/window compatible with low RF output loss 

Early design flexibility needed to allow some trial and error testing

Detailed analysis of full circuit and RF beam interactions essential



SCHEMATIC CONSTRUCTION WITH REALIZED STRUCTURES
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SIMPLIFIED BEAM ANALYSIS FROM J.J. HAMILTON (1958)
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With 500V beam, 3mA current:

52 mW produced by beam, 
49 mW lost in cavity,
3 mW delivered to output load



1200 GHZ RIDGED-WAVEGUIDE RE-ENTRANT CAVITY 
ANALYSIS FOR NANOKLYSTRON USING QUICKWAVE FDTD
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FIELD DISTRIBUTIONS
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FABRICATION OF 640 GHZ CIRCUIT USING PRECISION 
METAL MACHINING

35 µm

640 GHz Nanoklystron fabricated using precision machining in metal 
split block. The smallest feature is the 0.0015” diameter bunching grid 
hole. The assembled unit with an output waveguide horn is shown on 
the right.



SILICON DEEP REACTIVE ION ETCH WAFER PROCESSING STEPS
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CUT-VIEW OF A WAFER BONDED NANOKLYSTRON (A MODEL) 
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1st ITERATION MONOLITHIC NANOKLYSTRON CAVITY
[1200 GHz cavity split into two halves]

Top half micromachined in silicon 
showing a repeller hole

Bottom half of in silicon showing an 
emitter hole and a 5-step waveguide 
transformer terminating in a silicon 
window



BONDED WAFER HALVES WITH CAVITY CUTAWAY

Bonded Region

Wafer bonded cavity and a magnified view of the bonded interface
showing fused gold layers of the top and the bottom halves 



DEVELOPMENT OF COLD EMITTER CATHODES

Electron source for nanoklystrons must be capable of generating current 
densities of at least 1000 A/cm2 at low operating voltages.

Such current densities can be generated by employing cold cathodes, 
especially carbon nanotube-based field emitters.

The small diameter of carbon nanotubes (diameter of a single single-walled-
nanotube can be <1 nm) enables efficient emission at low fields, despite their 
relatively high work function (>4.5eV).

At 1-3 V/µm of threshold voltage, carbon nanotubes are the best suited for
low-power, high-current density applications. 

Efforts are underway to develop flat bed of grid-integrated ordered 
arrays of carbon nanotubes and tailor their field emission to suit 
nanoklystron applications.



ORDERED ARRAYS OF CARBON NANOTUBES
FOR THE FIRST TIME GROWN ON Al-DEPOSITED Si-WAFER 

Nanotubes exposed after ion-milling the anodized pores of alumina

Tube diameter is typically 40 nm with a density of ~100 tips/µm2



FIELD EMISSION MEASUREMENTS
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SILICON MICROMACHINED GRID STRUCTURES WITH 
INSULATING PHOTORESIST SPACER FOR MICRON 
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ORDERED CNT ARRAY EMISSION MEASUREMENT
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NEW NANOKLYSTRON AND EMISSION TEST CHAMBER
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SUMMARY

Design concept, circuit layout & simple analysis of a 1200 GHz 
nanoklystron presented

New style ridged waveguide re-entrant cavity designed and analyzed

Simple cathode/grid field emission tests performed in existing 
chambers.  

New assembly/measurement chamber being built.  

Close-in cold cathode emitter grid developed for carbon nanotube 
arrays

Copper 640 GHz nanoklystron cavity completed.

First iteration silicon monolithic 300/600/1200 GHz nanoklystron cavities 
completed. Wafer bonding tests successful. 


