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ABSTRACT After decades of research, Internet of Things (IoT) is finally permeating real-life and helps
improve the efficiency of infrastructures and processes as well as our health. As massive number of IoT
devices are deployed, they naturally incurs great operational costs to ensure intended operations. To effec-
tively handle such intended operations in massive IoT networks, automatic detection of malfunctioning,
namely anomaly detection, becomes a critical but challenging task. In this paper, motivated by a real-world
experimental IoT deployment, we introduce four types of wireless network anomalies that are identified
at the link layer. We study the performance of threshold- and machine learning (ML)-based classifiers to
automatically detect these anomalies. We examine the relative performance of three supervised and three
unsupervised ML techniques on both non-encoded and encoded (autoencoder) feature representations. Our
results demonstrate that; i) selected supervised approaches are able to detect anomalies with F1 scores
of above 0.98, while unsupervised ones are also capable of detecting the said anomalies with F1 scores
of, on average, 0.90, and ii) OC-SVM outperforms all the other unsupervised ML approaches reaching at
F1 scores of 0.99 for SuddenD, 0.95 for SuddenR, 0.93 for InstaD and 0.95 for SlowD.

INDEX TERMS Anomaly detection, Internet of Things (IoT), machine learning (ML), wireless links,
wireless networks.

I. INTRODUCTION
The Internet of Things (IoT) has received a plethora of
attention from both industry and academia due to the market
release of a variety of smart devices on a regular basis,
e.g. the devices retrofitted in home appliances, wearables,
healthcare, vehicles and industrial machinery, just to name
a few [1]. To this end, extensive research efforts have been
put forward for their active deployment and development to
enable increasingly efficient and more automated operations
in manufacturing, agriculture, transportation and healthcare,
but also due to their massive economic contributions [2].

Valid business cases [3] and successful real-world large-
scale IoT deployments are emerging as a way to improve
existing business processes as well as enable new applica-
tions [2]. However, once the network of sensors is deployed,
it becomes part of the operational infrastructure of a business,
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and needs to be maintained and serviced similar to any other
infrastructure, such as legacy IT infrastructure, robots and
machines just to name a few. Minimizing maintenance costs
while ensuring the reliability of IoT network [4] becomes
prohibitive when the number of sensors are in their thousands
or tens of thousands. To efficiently manage such massive
IoT networks, automatic IoT network monitoring [5] and
malfunction detection [6] solutions that automatically report
relevant malfunctions and filter them out without influencing
the business process are required.

IoT network or node malfunctioning can also be referred to
as network or node anomaly and to date, it has been defined
in various ways, often from the perspective of monitored
networking aspects. For instance, Sheth et al. [6] define and
identify anomalies from the IEEE 802.11 physical layer per-
spective, namely, hidden terminal, capture effect, noise and
signal strength variation anomalies, whereas Gupta et al. [7]
define anomalies from multihop networking perspective with
the aspects, such as black hole, sink hole, selective forwarding
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and flooding. Alipour et al. [8] define the anomalies from
IEEE 802.11 link layer security perspective with the focus
on aspects, such as injection test, deauthentication attack,
disassociation attack, association flood and authentication
flood. Generally speaking, anomaly detection research in IoT
networks can be found in the form of intrusion, fraud and
fault detection, system health monitoring, event detection in
sensor networks and detecting ecosystem disturbances [9],
where most studies mainly concerned with a certain type of
anomaly within a specific scenario.

In this paper, motivated by a real-world experimental IoT
deployment, we define four types of IoT anomalies that can
be identified at the link layer, namely sudden degradation,
sudden degradation with recovery, instantaneous degrada-
tion and slow degradation. Rather than focusing on the cause
of an anomaly as realized in [6] and [7], we focus our attention
on the observable symptoms of link measurements, namely
the changes in the expected received signal. Based on the
type of anomaly, we identify possible root causes that may be
related to hardware, firmware and the channel, and develop
models for automatically classifying the introduced anoma-
lies. By accurately detecting these four types of anomalies,
a wireless network operator is able to quickly and proactively
detect issues within the operation of the network without
waiting to be explicitly alerted by users. Proactively detecting
and mitigating malfunctions can increase user satisfaction,
reduce churn and ultimately show significant improvements
in business KPIs. Additionally, the detected and classified
anomaly type can aid technical staff with the well-informed
decisions so as to diagnose and resolve the issues. For
instance, sudden degradation with recovery is observed fre-
quently after updating the firmware of devices in the network,
which is highly likely related to the bugs of the firmware
that prevent devices from working as intended and trigger
the watchdog to reset. Therefore, discriminating between four
of those types of anomalies and automatizing this process
can speed up the real-time resolution of the network-related
issues, in turn diminishing the allotted personnel and their
efforts, and network-wide operational costs of mobile opera-
tors. The major contributions of this paper are as follows.

1) We define four types of anomalies that can appear
on wireless links and are representative for narrowing
down the causes and enabling more efficient mitiga-
tion. Driven by a real-world operational wireless infras-
tructure, for each of the defined anomalies we identify
their symptoms from the application perspective and
potential underlying causes.

2) We study the performance of standard manually-
engineered features and a proposed autoencoder-based
automatic feature generation approach, and show the
performance improvement brought by the latter.

3) We also analyse the relative performance of three
supervised and three unsupervised ML techniques.
More explicitly, we consider regression-based, tree-
based and kernel-based methods as part of our super-
vised techniques, while nearest neighbours, tree- and

kernel-based methods are leveraged as their unsuper-
vised counterpart techniques.

Additionally, minor contributions are outlined as follows:
1) Based on the gained knowledge while operating the

LOG-a-TEC wireless experimentation testbed [10],
we provide an analysis on real-world operational mea-
surements that further stresses the need for automated
anomaly detection in massive IoT networks.

2) We produce a publicly available anomaly detection
tool-set1 including entire procedures, e.g., anomaly
injection into trace-sets, feature generation out of data
representations, and model training and development.

This paper is structured as follows. Section II summarizes
the related work and Section III presents an analysis of the
real-world testbed measurements motivating our contribu-
tions, while Section IV introduces the four types of IoT net-
work anomalies. Then, Section V elaborates on various data
representations that can be used to generate features for train-
ing the proposed ML models, whereas Section VI discusses
the threshold-based approach as well as the selected super-
vised and unsupervisedML techniques. Section VII describes
the relevant methodological and experimental details, while
Section VIII provides thorough analyses of the results and
discusses the limitations. Finally, Section IX concludes the
paper.

II. RELATED WORK
We provide related work to the main contributions of this
paper as follows. First, we discuss related works that define
anomalies in wireless and IoT networks, then we stress on
the use of autoencoders for improving various aspects of
wireless networks including anomaly detection, and finally,
we focus on MLmodels that support for improved operations
of wireless networks.

A. ANOMALY DEFINITIONS IN WIRELESS NETWORKS
Generally speaking, an anomaly is defined as an outlier,
a distant object, an exception, a surprise, an aberration or a
peculiarity, depending on the domain, research community
and specific application scenario [9], [11]–[15]. A widely
used classification of anomalies, including in wireless sensor
network research is provided in [9], [16], where three classes
of anomalies are defined based on their nature; point anoma-
lies, contextual anomalies and collective anomalies. In [14],
Gupta et al. classify relevant studies on outlier detection
for time series data, one of which is the point outlier as
defined in [9], and others are subsequence outliers, global and
local outliers. More recently, Lavin and Ahmad et al. [17]
introduce a benchmark for anomaly detection, and target
mainly at cloud networks and associated services, where they
provide reference datasets to be used when evaluating the
performance of anomaly detection algorithms. While they do

1Script for the design and development of anomaly detec-
tion models: https://gist.github.com/gcerar/
0b03e55f41147a7b7230f45d1f1209d6
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not specifically define the type of anomalies, their benchmark
datasets include several anomalies.

Due to the spatio-temporal nature of wireless sensor net-
work monitoring and data collection, Jurdak et al. [18] intro-
duce temporal, spatial and spatio-temporal anomalies as well
as node, network and data anomalies, followed by even
finer grained anomalies, such as node resets, node failures,
etc. A number of studies then introduce more focused and
application specific anomalies. For instance, Sheth et al. [6]
define and identify anomalies from the IEEE 802.11 physical
layer perspective namely; hidden terminal, capture effect,
noise and signal strength variation anomalies. Moreover,
Gupta et al. [7] define anomalies with the aspects of multihop
networking, such as black hole, sink hole, selective forward-
ing and flooding, whereas Alipour et al. [8] define anoma-
lies from IEEE 802.11 link layer security aspects, such as
injection test, deauthentication attack, disassociation attack,
association flood and authentication flood. For further details,
motivated readers are referred to [18] for the diagnosis and
detection of wireless network anomalies.

B. AUTOENCODERS FOR IMPROVING WIRELESS
NETWORK OPERATIONS AND ANOMALY DETECTION
With the advent of deep learning, one class of techniques
belonging to this class ofML, referred to as autoencoders, has
been proven to be particularly useful at performing automatic
feature engineering also for time series data [19]. Autoen-
coders attempts to learn a lossless compression of the data
and the code resulting from that compression represents a
superior feature set.

Generally in wireless, autoencoders have been successfully
applied by [20] and their subsequent works, such as [21] to
accurately reconstruct physical layer signals and [22] sig-
nal denoising for more accurate localization. For anomaly
detection in wireless and IoT networks, Wang et al. [23]
proposed autoencoders for more accurate identification of
faulty parts of WSNs, as well as faulty antennas in antenna
arrays, whereas Shahid et al. [24] and Chen et al. [25]
proposed autoencoders for identifying anomalies in wire-
less and IoT networks based on transport layer traces, and
recently, Yin et al. [26] proposed recurrent autoencoders for
time series anomaly detection for IoT networks. However,
they used a synthetic dataset with metrics derived from sev-
eral Yahoo services. Unlike the state-of-the-art, this work
proposes autoencoders as an automatic feature generation
method for link layer anomaly detection and uses a real-world
wireless dataset in which the introduced four types of anoma-
lies are synthetically injected.

C. ML TECHNIQUES FOR WIRELESS AND IoT NETWORK
ANOMALY DETECTION
In the literature, it is often a good practice that when a ML
solution to a specific problem is considered, several counter-
part ML models are evaluated against each other for perfor-
mance analyses. For instance, Kieu et al. [19] compare the
performance of ten different ML techniques, such as Support

Vector Machines, Local Outlier Factor, Isolation Forest, just
to name a few, on six different datasets that are suitable for
anomaly detection.

With respect to wireless and IoT network anomalies,
Thing [27] evaluate the relative performance of four deep
learning and one decision tree models for anomaly detec-
tion and attack classification in IEEE 802.11 networks,
whereas Chen et al. [25] evaluate the relative performance
of principal component analysis, standard and convolutional
autoencoder for detecting anomalies in transport layer traces,
i.e., TCP, UDP and ICMP of wireless networks. Moreover,
Ran et al. [28] evaluate the relative performance of their
proposed semi-supervised approach of IEEE.802.11 anomaly
detection, and similarly Salem et al. [29] evaluate the rela-
tive performance of five ML techniques, i.e., SVM, decision
trees (J48), logistic regression, Naïve Bayes, and Decision
Table for anomaly detection in WSNs. Additionally, the pre-
vious authors [30] also evaluate the performance of their
proposed algorithm against selected three ML techniques,
namely linear regression, additive regression, and J48 deci-
sion tree for anomaly detection inWSNs. However, in most of
the ML-based network anomaly detection research discussed
in this section as well as in [31] provide only limited relative
performance evaluation results. To the best of our knowledge,
this paper is the first attempt to provide relative compar-
isons between three supervised and three unsupervised ML
techniques based on various data representations and their
encoded counterpart features.

III. MOTIVATION
Our lab runs the LOG-a-TEC 2 testbed that has empowered
wireless experimentation for more than ten years. The first
version of the testbed comprised of our custom embedded
platform [32] was mounted on public light poles in a small
municipality of Slovenia [33]. It included more than fifty
nodes, most of which were situated in hard-to-reach loca-
tions. A sensor management system [10] is used to keep the
record of each node for its hardware and software versions,
configurations, and locations. This system also performs a
number of management and diagnosis related tasks to moni-
tor the operation of the devices.

Over time, the users of the testbed had difficulties in reach-
ing some of the nodes or noticed unexplainablemeasurements
collected during their testbed experimentation. For instance,
the transceivers on some of the nodes were degraded sig-
nificantly for their receiver sensitivity and transmit power
performances, and in some cases to such a degree that they
became inoperative. As depicted in Figure 1a, third node
(ID-3) sensed transmissions from fifth node with received
signal strength indicator (RSSI) of about −70 [dBm] on
average till 2nd February of 2013. Following that, either
fifth node’s transmit power or third node’s receiver sensitiv-
ity was degraded significantly, which was reduced to about
−90 [dBm] on average. After investing a good amount of time

2LOG-a-TEC testbed with sensor platforms http://log-a-tec.eu
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FIGURE 1. Anomalies observed in operational environment, where solid black lines represent average RSSI and greyed areas show
maximum/minimum values.

and effort in understanding and reproducing the anomaly,
the fifth node was diagnosed with a hardware failure, and it
could only be restored to normal operation by replacing the
integrated circuit for transceiver (TI CC2500).

Similarly, another anomaly type is experienced in
Figure 1b with a sudden degradation and there were several
recovery attempts between February 15th and March 9th
2013. In this particular case, we figured out that the sixth
node was accidentally downgraded in February to an older
version of the firmware that had a bug in the spectrum sensing
code, which directly affected the operations of the sixth node
and degraded its transmit power. Figure 1c presents sev-
eral spike-like instantaneous degradation anomalies between
nodes 12 and 15. We were not able to discover anything
technically wrong with these respective nodes. Therefore,
we assumed that these anomalies were probably due to
weather and/or large objects moving around the radios, since
these two devices were mounted in an industrial zone, where
moving large trucks and massive long-term standing objects

were not an uncommon occurrence, which can indeed incur
spikes due to the instantaneous non-line-of-sight channels
experienced. Finally, Figure 1d also exhibits two distinguish-
able rapid drops and climbs, butmost importantly, on average,
shows a slightly degrading performance in sensitivity and/or
transmit power between nodes 4 and 26 after December 2012.
We were not able to readily justify such behaviour of the
device, but ageing of electronic components may induce such
behaviour, which is a well-known issue [34].

IV. WIRELESS NETWORK ANOMALIES
Wireless networks are designed to exchange data between
two communicating parties, e.g., video, voice and sensor
measurements. As long as the network remains functional
and is not interrupted, all the devices within the network are
considered ordinarily operable. When the devices are com-
promised as exemplified in Section III, then a degradation
in the service quality is experienced. The way how anoma-
lies affect the user’s service quality experience is stringently
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FIGURE 2. Visual representation of anomalies abbreviated as; a)
SuddenD, b) SuddenR, c) InstaD, d) SlowD.

associated with the type of anomaly. Therefore, in this
section, we introduce four types of anomalies that can be
observed in communication links of wireless networks, which
were mainly discovered in our evaluation of a real-world
experimentation, as discussed in Section III: a) sudden degra-
dation, b) sudden degradation with recovery, c) spike-like
instantaneous degradation and d) slow degradation.

A. SUDDEN DEGRADATION (SuddenD)
The sudden degradation anomaly can be mathematically rep-
resented by a step function with decreasing slope, as depicted
in Figure 2a. In our case, this represents a sudden persistent
change in the state of a link. While this sudden change with
an increasing slope is also possible in theory, typically it
will only lead to a more reliable link, therefore they are not
accounted as an anomaly.
Symptom: From the perspective of a user, services may

become unavailable, offline and unreachable. From the per-
spective of a network, either the transmitter stops generating
electromagnetic field or the receiver is unable to receive data.
Possible causes: Such sudden degradation can be induced

by a transceiver failure as discussed in Section III and
depicted in Figure 1a, a significant and sudden change in the
position of one or both of the communicating parties leading
them to remain disconnected, moving from line-of-sight to
a non-line-of-sight environment with obstacles preserving
electromagnetic shielding materials, and a significant hard-
ware or software failure where built-in recovery mechanisms,
such was watchdogs cannot be triggered.

B. SUDDEN DEGRADATION WITH RECOVERY (SuddenR)
The sudden degradation with recovery anomaly can be math-
ematically represented by a step function with decreasing

slope, as depicted in Figure 2b. In this case, the state of a link
suddenly changes, stays in the new state for a longer period
of time and ultimately returns to the previous state. In sudden
degradation with recovery, communication is interrupted for
a certain period of time.
Symptom: From user’s perspective, provided services may

become sluggish and unavailable for a certain period of time
and later resume back to their regular operations. From the
perspective of the network, in the case of sudden degradation
with recovery, either transmitter temporarily stops generating
electromagnetic field or the receiver temporarily is unable to
receive it.
Possible causes: This type of degradation can be caused

by buffer congestion and software bug, as discussed in
Section III and depicted in Figure 1b, where watchdog per-
forms reboot after a certain timeout, a radio remaining in
excessive active state and requiring recalibration, an obstacle
blocking the communication for some time, and a signal
jammer equipped on a military vehicle that is passing by.

C. INSTANTANEOUS DEGRADATION (InstaD)
The instantaneous degradation anomaly can be mathemati-
cally represented by a step function with steeply decreasing
slope, forming a sudden spike, as depicted in Figure 2c. In this
case, the state of the link changes suddenly, but instanta-
neously returns to its previous state. The instantaneous degra-
dation anomaly may appear as an information loss.
Symptoms: From user’s perspective, a real-time service

may experience instant lags, while other non-real-time ser-
vices may work unaffected. From the perspective of the net-
work, either transmitter experiences a deep fading instance or
the receiver becomes unable to receive data due to an instant
exposure to excessive noise or interference.
Possible causes: This type of degradation can be caused by

an instant interference, collision, quantization errors, value
reading errors or sudden saturations in the transceiver’s elec-
tronic components, as discussed in Section III and depicted
in Figure 1c, where anomaly can be stringently induced by
the issues related to the propagation environment, such as
an external device communicating on the same frequency,
excessive background noise and multipath fading, just to
name a few.

D. SLOW DEGRADATION (SlowD)
The slow degradation anomaly can be mathematically repre-
sented as a normalized linear function with slightly decreas-
ing slope, as depicted in Figure 2d. In this case, the state of the
link undertakes slight and unnoticeable changes for a longer
period of time and it may never resume to its original state.
The slow degradation anomaly may commence triggering
information loss and interruptions after a certain amount of
time.
Symptom: Slow degradation anomaly could go unnoticed

for a very long time, where users may not even notice any dif-
ference in service quality immediately. When relevant thresh-
olds are triggered, users commence experiencing deteriorated
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FIGURE 3. Distinct representations of the data for sudden degradation anomaly (SuddenD).

service quality. After employed compensation methods are
exhausted (e. g., buffers, queues, bandwidth preservation
strategies), communication may be interrupted and intended
services may become unavailable. From the perspective of
the network, either transmitter gradually stops generating
sufficient electromagnetic field to satisfy a received signal-
to-noise ratio threshold or the receiver is not able detect or
collect enough electromagnetic radiation to decode the infor-
mation, which can also be induced by the aging of electronic
components.
Possible causes: This type of degradation may be caused

by easier aging of electronic components in extreme working
conditions (e. g., high moisture and heat) as it is discussed
in Section III and depicted in Figure 1d, where it reflects a
gradual but permanent impairment to the hardware or, slowly
increasing obstacle such as a building being slowly built or
vegetation growing.

V. DATA REPRESENTATION
Sections III and IV provided real-world anomaly examples
and formalized wireless link anomalies, respectively. In the
following, we provide five distinct ways to represent data that
can be used as features while training the machine learning
model.

A. TIME-VALUE REPRESENTATION
The anomalies appearing in time series of RSSI values and
in Figures 1 and 2 are recorded as raw time-ordered values,

thus forming a time series. We refer to this time-ordered val-
ues as time-value representation. In Figures 3a, 4a, 5a and 6a,
the time-value representation of an ordinary link is depicted
with solid black lines and its anomaly injected counterpart,
as per the definition from Section IV is depicted with dashed
red lines.

However, through mathematical transformations, time
series can be represented in other domains that, in some
cases may be more suitable for the analysis of anomaly or
pattern recognition. Motivated readers are referred to [35]
for a comprehensive taxonomy of time series representation.
In addition to the time-value representation, in this study,
we also consider an aggregated representation, a histogram
representation, a frequency domain representation and an
automatically encoded representation.

B. AGGREGATED REPRESENTATION
This representation contains seven statistical aggregates com-
puted from the time-value representation, namely average,
standard deviation, and all five quantile (Q) values, such as
zeroth quantile (minimum), first quantile, second quantile
(median), third quantile, and fourth quantile (maximum).
This representation is depicted in Figures 3b, 4b, 5b and 6b
for each anomaly type, where they present values belonging
to middle quantiles (Q1-Q3) as a box shape, first quantile
(Q0-Q1) and third quantile (Q2-Q3) are marked as separate
whiskers on top and the bottom, median value (Q2) is shown
as a red bar within the box shape (–), and finally, average is
portrayed as a blue triangle shape (N).
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FIGURE 4. Distinct representations of the data for sudden degradation with recovery anomaly (SuddenR).

FIGURE 5. Distinct representations of the data for spike-like instantaneous degradation anomaly (InstaD).

C. HISTOGRAM REPRESENTATION
The histogram representation observed in Figures 3c, 4c, 5c
and 6c is performed via splitting the range between (global)

minimum and maximum values into ten equally-sized bins.
More explicitly, this representation exhibits the percentage of
values allotted in each bin.
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FIGURE 6. Distinct representations of the data for slow degradation anomaly (SlowD).

D. FFT REPRESENTATION
The frequency domain representation provided in Figures 3d,
4d, 5d and 6d utilizes absolute value of complex transforma-
tion, which is presented using log-scale for better contrasting
‘‘with anomaly’’ scenario against the ‘‘no anomaly’’ one.

E. ENCODED REPRESENTATION
A recent revolution of deep learning techniques, namely
autoencoders, exhibits great performance returns in a diverse
set of problems. To contrast against the above-mentioned tra-
ditional representations, we propose automatically generated
encoded (autoencoder) representations for all anomaly types
introduced in Section IV.

Autoencoders [16], [36], [37] are neural networks which
are trained to generate a representation from the reduced
encoding that is very similar compared its original input. The
middle layer of an autoencoder is depicted with the purple
circles in Figure 7 containing the reduced version of the input
data and is referred to as a code h whose size is expected
to be smaller than the size of the input data. As portrayed
in Figure 7, an autoencoder is composed of two parts; i)
an encoder function h = f (x), and ii) a decoder function
producing a reconstruction x̂ = g(h). The autoencoders thus
learn to include only the most useful signals from the input
data, while mitigating the unnecessary signal noise.

An undercomplete autoencoder, where code size is smaller
than input size, with nonlinear activation functions presents

FIGURE 7. Illustration of autoencoder configuration during training
process.

a generalized form of principal component analysis (PCA).
Through the training process, the error between input x
and output x̂ becomes negligible. Consequently, neural net-
work learns a new representation of the input data, within a
reduced feature-space. For example, in Figure 8a we trans-
form time-value representation containing 300 dimensions
into a newly encoded representation having only 4 dimen-
sions. Figures 8a, 8b, 8c, and 8d present scenarios for a
link with both; i) ordinary (non-anomalous) data, ii) anomaly
injected (anomalous) data for SuddenD, SuddenR, InstaD
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FIGURE 8. Automatically generated features (code) exemplified for time-value representations.

and SlowD anomalies, respectively. Non-anomalous link is
depicted with a solid black line, whereas anomalous link is
marked with a dashed red line.

VI. APPROACHES FOR THE DETECTION OF ANOMALIES
Considering the link anomalies defined in Section IV and
their corresponding representations depicted in Figures 3, 4, 5
and 6, it is clear that setting predefined thresholds for the
investigated data would enable the detection of abnormal
measurements and aid in treating them as an outlier. How-
ever, it has been proven that since fixed threshold-based
approaches do not adapt to fluctuating behaviour of the data,
selecting a threshold becomes consequential and thus may
lead to poor performance, especially in real-time prediction
applications [38]. On the contrary, adaptive and proactive
approaches, such as deep learning neural network (DNN)
and recurrent neural network (RNN) [38], can learn from
regular patterns of the data and accurately identify abnormal
behaviours to enable more accurate anomaly detection.

A. THRESHOLD BASED DETECTION
Considering Figure 2a, detecting SuddenD requires the diag-
nosis of steep falling slopes that do not recover for a relatively
long, possibly predefined, period of time. Detecting SuddenR
amounts to the identification of a sudden drop and later a

boost in signal that resumes back to the original strength
level within a predefined time window. SuddenR and InstaD
are somewhat similar from application perspective. However,
the distinction lies in the length of the time window at which
the signal recovers back to its original levels within an instant
of the time for InstaD. Detecting SlowD requires the diag-
nosis of a slowly but rather consistently falling slope for a
relatively long, possibly predefined time window.

The time-value rules are a straightforward way to approach
link-level anomaly detection. These rules may either be set
based on an experienced arbitrary threshold or they can be
identified using a theoretical or numerical method. How-
ever, as discussed in Section V, there are various possi-
ble ways to detect anomalies. For instance, it can be seen
on Figures 3b, 4b and 6b that RSS distribution of an aver-
age healthy link is significantly different than the RSS
distribution of the same link when anomaly is injected,
which is readily distinguishable for SuddenD, SuddenR and
SlowD anomalies at a glance. More explicitly, the spread
of RSS for the anomaly injected link is wider, and its
mean and median values are overwritten accordingly. Sim-
ilar conclusions can be made for the respective histograms
in Figures 3c, 4c and 6c. However, abnormal distributions in
SlowD anomaly can only be detected with long-term obser-
vations. Moreover, sudden changes in time series can also
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be detected in frequency domain, which in our case, are
readily observed for SuddenD and SuddenR anomalies as
larger magnitudes at lower frequencies in Figures 3b and 4b,
respectively. Changes due to injected anomalies are almost
indistinguishable in the case of InstaD and SlowD while
leveraging frequency domain.

Details of the threshold strategy are provided in
Section VIII. For time-value perspective, we consider
D’Agostino-Pearson’s normality statistical test [39], [40].
The test assesses whether certain set of points come from
normal distribution or not. If the p value is below threshold,
it is likely that the measurements do not come from normal
distribution. Notice that Pearson’s normality test is not suffi-
cient condition for normality claims. Although, the approach
may work fine for our limited line-of-sight scenario, it will
not work for mobile or non line of sight scenario. For aggre-
gated perspective, we consider for a link to have an anomaly
two separate criteria. One criterion is based on the difference
between mean and median values, which (if we assume
normal distribution) are fairly close. The second criterion is
how much can values deviate in standard deviation. Either of
them has to be true for a link to bemarked to have an anomaly.
For histogram perspective, we define and arbitrary threshold.
Anything below that is marked as an anomaly.

B. MACHINE LEARNING-BASED DETECTION
A ML model is expected to distinguish between anomalous
and ordinary behaviours of a link, thus requires to solve a
binary classification problem. There are two ways to train
a ML model to identify such distinctions. The first one is
based on a supervised training approach where all anomaly
data are labelled, although in many practical applications,
producing a reliable training dataset is expensive and it can
inevitably cover only the type of anomalies that are present
in the training dataset, which then cannot cope with the
abnormal link behaviours in a comprehensive manner. For
this reason, training a ML model in an unsupervised way is
more practical, where learning from patterns of the overall
link operations so as to distinguish the abnormal behaviours
of a link from the anticipated behaviours is provoked, which
is referred to as the automated detection of an outlier [41] or
an anomaly [16] using ML models.

In addition to baseline threshold-based approach discussed
in Section VI-A, we also consider three supervised and three
unsupervised ML techniques as elaborated in the following
sections.

1) SUPERVISED APPROACHES
To evaluate the performance of selected supervised ML tech-
niques against each other and against the threshold-based
approach, we opt for a set of candidate supervised approaches
leveraging one representative technique from three differ-
ent classes: i) Logistic Regression from Regression Analy-
sis [42], ii) Random Forest from tree ensemble class [43]
and iii) Support VectorMachines (SVM) from kernel-method
class [43].

Logistic Regression [42] is a modified linear regression
able to work on classification problems. In linear regression
the goal is to fit a line to data samples and minimize loss.
Similarly, logistic regression aims for fitting sigmoid function
with the goal to minimize loss at predicting any two classes.
Logistic regression also includes a generalized form suitable
for high-dimensional input data and multi-class rather than
binary classification.
Random Forests [44] is an ensemble method that uses

a number of decision tree classifiers followed by a voting
mechanisms to perform multi-class classification. The trees
are learnt by randomly splitting a relatively large feature
space into smaller subspaces. Each tree provides a class in
which a specific data point falls into, the class corresponds
to the ‘‘vote’’ of that tree. The final outcome of the classifier
then uses a mechanism, such as majority voting to provide the
final result.
Support Vector Machine [45] is a learning algorithm that

belongs to the family of kernel methods. Roughly speaking,
SVMs attempt to learn a hyperplane that best splits a set of
data into two classes. The shape of the hyperplane depends on
the type of kernel function selected for the algorithm. When
the kernel function is linear, so is the learnt hyperplane.When
non-linear kernels are chosen, for instance RBF kernel [46],
then the hyperplane is non-linear therefore better suited to
approximate or discriminate non-linear random variables.

2) UNSUPERVISED APPROACHES
The cost of producing labels for supervised learning is
discussed in Section VI-B. As a countermeasure, we also con-
sider a set of candidate unsupervised approaches for devel-
oping anomaly detection models [43], where we leverage
one representative technique from three different classes:
i) Local Outlier Factor from Nearest Neighbour (NN)
class [43], ii) Isolation Forest from tree ensemble class [43]
and iii) one-class Support Vector Machines (SVM) from
kernel-method class [43].
Local Outlier Factor [47] belongs to the k-Nearest Neigh-

bour (kNN) family of algorithms, which rely on the com-
putation of the distance between data points of the feature
space. The feature vectors with smaller distance are alike
and thus clustered together. One drawback for this family of
algorithms is that as the dimensionality of the training data
grows, the computational complexity evolves exponentially.
However, there have been attempts in circumventing this
exponential complexity, e. g., Ball Tree.
Isolation Forest [48] belongs to tree-based ensemble meth-

ods, and works in a roughly similar way as Random Forests
as described above. Essentially, it represents a RandomForest
adapted so that it optimizes outlier detection rather than
multi-class classification of majority of data it sees. Based
on certain metrics and distinct criteria, the algorithm decides
whether particular subspaces contain any abnormal samples,
namely anomalies.
Support Vector Machine, as described at the end of super-

vised approaches, can also be used in an unsupervised mode
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for anomaly detection. In fact, most ML techniques can be
used in both supervised and unsupervised mode. With this
one-class approach, the model is expected to distinguish data
as negative or positive instances. Then, the model can learn
the boundaries of the data so as to detect the points that lie
outside the boundary exposed as anomalies or outliers.

VII. METHODOLOGY AND EXPERIMENTAL DETAILS
Before we proceed with the analysis of the relative perfor-
mance of the wireless link anomaly detection approaches
proposed in this paper, we provide relevant methodological
and experimental details.

A. TRAINING DATASET GENERATION
For our experimental evaluation, we consider a real-world
measurement dataset, i.e., Rutgers [49], which contains mea-
surements from 29 nodes at 5 different noise levels and
each record has 300 measurements. Although every link is
measured at five different noise levels, wee consider each
recording as a different link and we assume that there is
no correlation. On this existing real-world dataset we syn-
thetically inject the four types of anomalies proposed in this
paper as follows. First, we only pick the links without packet
loss. This reduces our dataset from 4 060 to 2 123 (≈ 52%)
of independent links. Second, by means of applying one
anomaly type at a time, we randomly pick 33% of these
links, at which the anomaly is injected according to guidelines
in Table 1, while the remaining is left intact.

TABLE 1. Artificial anomaly injections for each anomaly scenario.

The suddenD anomaly, observed in Figure 2a, on the
affected link appears arbitrarily between 200th and 280th
packet and it persists indefinitely. In case of suddenR,
observed in Figure 2b, anomaly applied on the link appears
only once with a random start from 25th to 275th packet,
where it persists for an arbitrary duration between 5 to
20 measurements. For InstaD of Figure 2c, the anomaly
can appear anywhere in the entire series with 0.01 proba-
bility, which means that each anomaly on the affected link
appears three times on average. Finally, SlowD anomaly of
Figure 2d appears arbitrarily between 1st and 20th measure-
ments, where it commences with a random degrading pace of
duration between 150 and 280 packets. In a nutshell, anomaly
injection details are provided in Table 1.

B. COMPUTING STANDARD AND ENCODED
REPRESENTATIONS
Once anomalies are injected as specified in Table 1,
we compute four different data representations described in

Section V. The first one, namely time-value representation
of Section V-a, converts each link into a single feature vector
containing 300 features. The second one, the so-called aggre-
gated feature, summarizes each linkwith 7 features, which are
described in Section V-b. The third one, namely histogram
feature discussed in Section V-c, defines ten equally spaced
bins, which are then presented to a model as a feature vector
containing 10 features. The forth one, namely frequency fea-
ture elaborated in Section V-d, gives the model a large feature
vector of frequency-domain representation summing up to
nearly 150 features. As we compute four representations for
each of the four types of anomalies, we generate 16 candidate
datasets.

Next, we also consider autoencoders for each anomaly
scenario and each of the four standard representations. As any
other deep neural network, autoencoder also requires many
iterations of training. To produce credible results with autoen-
coder, we build the generic model in two steps. In the first
step, we split the dataset into training and test groups with
a 60:40 ratio, respectively. In the second step, when the
weights of the autoencoder are converged, we perform an
end-to-end evaluation on the test group. Relevant autoencoder
configurations are provided in Table 2, where the layers and
their required parameters are outlined for the encoder and
the decoder. Although recent trends in DNNs go towards
the use of convolutional layers, a convolution layer would
make sense only in case of time-value and frequency perspec-
tive, due to their reasonable size and correlated neighbouring
vector values. Therefore, our decision is to go with fully
connected (dense) layers. For the activation part, we use
batch normalization (BN) followed by Leaky Rectified Lin-
ear Unit (leaky ReLU, or LReLU) with α = 0.2 coefficient
for negative values. While plain ReLU is most widely used

TABLE 2. Autoencoder configurations.

212140 VOLUME 8, 2020



G. Cerar et al.: Learning to Detect Anomalous Wireless Links in IoT Networks

non-linear activation function, its leaky version has shown
several benefits and minor overall improvements [50].

To produce the encoded representations, we feed the
16 datasets corresponding to the representation provided in
Sections V-(a),(b),(c),(d) into the autoencoder, resulting in
additional 16 candidate datasets. Therefore, to continue with
the anomaly detection, we train both supervised and unsuper-
vised ML models on a total of 32 datasets, 16 corresponding
to the four standard representations of each anomaly and the
other 16 corresponding to the encoded representations.

C. PERFORMING AUTOMATIC ANOMALY DETECTION
Next, we compute the performance of the threshold, three
supervised and three unsupervised ML techniques described
in Section VI on the 32 generated datasets correspond-
ing to the proposed anomalies and representations. Each
approaches’ output is compared to a label to identify whether
the link actually contains anomalies or not.

1) THRESHOLD APPROACH
Descriptive details of leveraging certain thresholds for each
anomaly can be found in Section VI-A. The utilized exper-
imental threshold parameters are listed in Table 3. The
threshold for the time-series representation that uses the
D’Agostino-Pearson’s normality statistical test [39], [40] is
p < 10−3. The threshold for the aggregated representation
assumes the absolute difference between mean and median is
higher than 3dB or that the double of the standard deviation
is higher than 2.5dB. The threshold for the histogram repre-
sentation is set at RSSI < −85dBm while threshold selection
for the FFT and encoded representations were infeasible to
find using our trial-and-error approach. The differences in the
FFT representation are not easily visible or detectable using
simple methods while the encoded representations cannot
be easily interpreted, therefore also deriving an appropriate
threshold is not possible.

TABLE 3. Predetermined anomaly thresholds.

2) MACHINE LEARNING-BASED APPROACHES
For each of the six selected ML techniques, we use standard
ML cross-validation.3 We train the models using shuffled
data split into training and test sets with a 80:20 ratio, respec-
tively. Model is trained with the training set and evaluated
using the test set in order to ensure credible results. We use
standard metrics for evaluating classifiers: precision, recall

3Stratified K-Fold cross validation is implemented by using
StratifiedKFold parameter in Python Scikit Learn toolbox https:
//scikit-learn.org/stable/

and F1 score. Precision measures how many of the instances
detected as class A actually belong to class A, expressed as;
Precision = TP

TP+FP , whereas recall measures how many of
the instances belonging to class A were actually detected,
expressed as; Recall = TP

TP+FN , where TP, FP and FN stand
for true positives, false positives and false negatives, respec-
tively. F1 score is quantified by the harmonic mean of the
precision and the recall, where larger values indicate bet-
ter classifiers with balanced and higher precision and recall
performances.

For each of the ML techniques selected in Section VI,
Table 4 lists the respective implementations and parameters
used in the experiments. For instance, for logistic regression
we use the LogisticRegression implementation available in
the Python Scikit Learn toolbox.4 As the LogisticRegression
implementation enables setting 12 different parameters that
influence the final model, we generally select standard values
that have been proven to work on large number of cases
and datasets by the ML community. However, we identify
selected parameters that should be optimized, such as the
regularization strength C in this case. We search for the
best configuration by adapting an array of possible values
C ∈ [10−3, 10−2, 10−1, 100, 101, 102] and ultimately select
the best performing regularization factor C among them. For
instance, Figure 9 presents the scenario where a model is
trained using LR on time-value representation for SuddenD
anomalies and based on robust scaler. For this particular
scenario, the best F1 score of this model is attained by means
of setting C to any value that is larger than 1. For the results
presented in the next sections, we only account for the best
F1 scores obtained after searching for such near-optimal
regularization parameter values.

FIGURE 9. Regularization parameter (C) search for selecting the best
performing model that is, for example, trained using LR on time-value
representation for SuddenD anomalies and based on robust scaler.

The implementations chosen for the remaining algorithms
also include over ten possible input parameters. For LOF,
we vary the number of neighbours, algorithm and leaf size for
finding the best performing model. For RForest and IForest,
we vary the number of base estimators, whereas for SVM and

4https://scikit-learn.org/stable/
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TABLE 4. ML techniques and their relevant parameters.

OC-SVM, we vary the regularization factor C , the kernel and
the kernel coefficient gamma for the rbf kernel, respectively.
As some of the models are sensitive to scaling, we also

consider training on data that is; i) not scaled, ii) scaled by
using mean values, iii) scaled using mean and deviation, and
iv) scaled using min-max. The entire procedure and param-
eters can be readily found and used in the existing public
open source repository.5 Six selected ML techniques with the
associated parameter tuning are trained over the 32 datasets,
totalling at more than 40,000 anomaly detection models.

VIII. EVALUATION
In this section, we evaluate the relative performance of
various data representations discussed in Section V and of
approaches discussed in Section VI for detecting four types
of anomalies introduced in Section IV. The methodological
and experimental details utilized for obtaining the results are
elaborated in Section VII.

A. PERFORMANCE ANALYSES OF DATA
REPRESENTATIONS
In this section, we first provide insight into how a model
learns to classify by discussing the importance of various
features resulting from the four manually generated and
interpretable representations for discriminating the four types
of anomalies defined in Section IV. Next, we discuss the
influence of the five data representations, including those
four manually generated ones and the automatically gener-
ated (autoencoder) one, as elaborated in Section V, on the
performance of the learnt models. This entire subsection
focuses on the influence of representations on the final mod-
els, while the influence of the ML approaches is analysed in
Section VIII-B.

5Script for the design and development of anomaly detection models
excluding data preprocessing is available at:
https://gist.github.com/gcerar/
0b03e55f41147a7b7230f45d1f1209d6

1) ANALYSING THE DISCRIMINATIVE IMPORTANCE OF
FEATURES
For analysing the discriminative power of the features in
learning to classify the four anomaly types, we choose LR for
its simplicity and reasonable tractability. As explaining the
meaning of the automatically generated features is infeasible,
we exclude them from this part of the analysis, without loss
of generality.

Figures 10, 11, 12 and 13 depict the weights learnt by the
LR on the representations discussed in Section V. Each set
of figures corresponds to an anomaly type, namely SuddenD,
SuddenR, InstaD and SlowD. In the above-referred figures,
the green weights depict the features that are important for
identifying normal links, whereas the red weights are impor-
tant for detecting the anomalous links. Using these learnt
features, it is possible to look at the LR as a linear function
with as many variables as the length of the feature vector, e.g.,
300 for time-values representation and 8 for the aggregated.
Each point in the feature vector has its corresponding weight
with which it is multiplied. When all multiplications (weight
* variable(n)) are summed up, a positive or a negative value
corresponding to one of the two classes are obtained, i.e., nor-
mal or anomalous links.

For the case of the time-value representation of the Sud-
denD anomaly from Figure 3a, it can be seen that the points
depicted with red, mostly starting from somewhere after fea-
ture 200 play amore important role whenmaking the decision
on whether an input feature vector contains an anomaly or
not. The reason why LR learns that these features are the
most important ones can be explained from the way the Sud-
denD anomaly is injected in the training dataset. According
to Table 1, SuddenD is injected randomly between packets
200 and 280. Therefore LR learns that those points are more
discriminative for the anomalies. Simplistically, when multi-
plying the anomalous vector from Figure 3a with the weights
in Figure 10a, and subsequently summing up, the result will
become positive, and hence the input will be classified as
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FIGURE 10. Learnt feature importance for distinct representations of the data for sudden degradation
anomaly (SuddenD).

FIGURE 11. Learnt feature importance for distinct representations of the data for sudden degradation
with recovery anomaly (SuddenR).

anomaly. On the other hand, when the normal vector from
Figure 3a is multiplied with the weights in Figure 10a, upon
summing them up, the result will become negative, thus the
vector will be classified as normal.

Similar discussions over time-value representations can be
made for all the other anomalies. SuddenR anomaly is ran-
domly injected between packets 25 and 275 of the time-value
representation as per Table 1, and it can be seen from
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FIGURE 12. Learnt feature importance for distinct representations of the data for spike-like
instantaneous degradation anomaly (InstaD).

FIGURE 13. Learnt feature importance for distinct representations of the data for slow degradation
anomaly (SlowD).

Figure 11a that the most important features for detecting
the anomaly, represented with red, lie within this range. The
importance of features for the spike anomaly that is quite

random in nature and also occurs often in the data due to
the nature of the wireless channel is depicted in Figure 12a.
Finally, the importance of the features for detecting SlowD
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TABLE 5. Performance of detecting sudden degradation (SuddenD) anomalies.

is higher in the second half of the feature vector as depicted
in Figure 13a since that’s where the degradation becomes
more evident.

Moving to aggregated representations, it can be seen from
Figure 10b that standard deviation (Std) and the last quan-
tile (Q75) are the most important features for detecting the
anomaly, with minor contribution from the median and Q50.
This is because standard deviation increases when SuddenD
anomaly is present while the count of high RSSI values in the
last quantile is smaller when this anomaly is present. Next, for
SuddenR, the two main features remain the same as the shape
is very similar to the SuddenD as can be seen in Figure 11b,
albeit the duration differs leading to a more prominent influ-
ence of the mean for discrimination. For InstaD, that can be
seen as a very narrow SuddenR randomly appearing on 1%
of the link, Std looses importance while the mean and two
quantiles become more predictive as depicted in Figure 12b.
For SlowD, the model learns that features which inform about
the slope that appears and increases, therefore Q75 counting
high RSSI values and the maximum (max) are predictive. The
median and Q50 that capture the intermediate values of the
slowly increasing slope also add minor discriminative power,
as portrayed in Figure 13b.

In the case of histogram representation, the first bins where
cumulated low RSSI values corresponding to SuddenD,
SuddenR and InstaD anomalies are the most important ones
according to Figures 10c, 11c and 12c. For the case of SlowD
presented in Figure 13c, one of the middle bins that capture
intermediate values is the most discriminative while the other
bins seem to not contribute to either class.

Finally, the importance of features in the case of frequency
representation presents a similar line of reasoning as for the
other representations. For SuddenD and SuddenR anomaly
amplitudes at low frequencies that introduce a major shift
in the mean are the most important features, as portrayed

in Figures 10d and 11d. For InstaD there is no clear impor-
tance pattern as shown in Figure 12d, whereas for SlowD the
feature amplitudes around 0 are the most prominent ones as
illustrated in Figure 13d.

2) THE INFLUENCE OF THE REPRESENTATIONS ON THE
PERFORMANCE OF THE LEARNT MODELS
The best performing results of the classification with respect
to F1 score are presented in Table 5 for SuddenD, Table 6 for
SuddenR, Table 7 for InstaD and Table 8 for SlowD. The first
column of the tables lists the approach, the second column
outlines the used ML techniques, while columns 3 to 6 list
the results for time-value, aggregated, histogram and FFT
representations, respectively.

The encoded representation introduced in Section V-e and
employed according to the methodology in Section VII-B
is inserted into the above-mentioned performance tables
with the name of respective ML technique using the term
‘‘encoder’’. More precisely, referring to the rows correspond-
ing to the ML technique, say IForest, the performance results
are implemented for the four mentioned representations for
the IForest ML technique. Additionally, at the row entitled
‘‘Encoder + IF’’, the numerical results refer to the IFor-
est ML technique that is applied to the codes generated
from the four representations, respectively. Finally, the super-
scripts identify the scalingmethods utilized. The three highest
F1 scores for supervised approaches and the three highest
F1 scores for unsupervised approaches are delineated in bold
font.

With respect to the data representations, from the results
listed in Tables 5, 6, 7 and 8, two high level observations are
outlined as follows.
• None of the four manually generated features clearly
dominates the remaining ones in terms of anomaly
detection performance.
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TABLE 6. Performance of detecting sudden degradation with recovery (SuddenR) anomalies.

TABLE 7. Performance of detecting spike (InstaD) anomalies.

• In most cases, automatically generated encoded data
representation improves anomaly detection performance
compared to the same non-encoded counterpart.

a: SuddenD ANOMALIES
For SuddenD observed in Table 5, all representations produce
nearly perfect F1 scores of above 0.99 with all supervised
ML approaches. Moving to unsupervised approaches, it can
be readily seen that the histogram representation works best
with LOF, however the F1 score of 0.76 is modest. The
aggregated features with F1 = 0.83 work best with IForest
followed by the histogram features with F1 = 0.72. The
encoded representations surpass all non-encoded ones with
this approach reaching F1 scores up to 0.97. All but the

manual aggregated features yield good F1 scores of above
0.9 with OC-SVM, however the frequency representation
dominates with F1 score of above 0.98. The encoded rep-
resentations improve the anomaly detection performance in
three of the four possible cases.

b: SuddenR ANOMALIES
For SuddenR observed in Table 6, almost all representations
produce high F1 scores of above 0.9 with all supervised
ML approaches. The time-value representation is slightly
inferior to the other manual and autoencoded representations,
producing 0.89 F1 score with LR, 0.96 with RForest and 0.97
with SVM.
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TABLE 8. Performance of detecting slow degradation (SlowD) anomalies.

For unsupervised approaches, unlike in the case of
SuddenD, the time-series and histogram representations work
best with LOF, with high F1 scores of above 0.93. Similarly,
the aggregated features with F1 = 0.75 work best with IFor-
est followed by the frequency representation with F1 = 0.64
for SuddenD anomaly. The encoded representations surpass
all non-encoded ones with this approach reaching F1 scores
up to 0.98. The manual features yield good scores of above
0.89 with OC-SVM, however the time-value and histogram
representations dominate with F1 score of above 0.94. The
encoded representations do not improve the anomaly detec-
tion performance for this anomaly type using OC-SVM.

c: InstaD ANOMALIES
For InstaD observed in Table 7, almost all representations
produce high F1 scores of above 0.9 with all supervised
ML approaches. The time-value representation is slightly
inferior to the other manual and autoencoded representations,
producing 0.89 F1 score with LR, 0.91 with RForest and
0.94 with SVM. While for the previous SuddenD and Sud-
denR the remaining three representations yielded comparable
F1 scores with all ML approaches, for InstaD anomaly, fre-
quency domain representation is less suitable when compared
to histogram, and histogram features are less suitable than
the aggregated features in terms of the anomaly detection
performance.

Considering unsupervised approaches, the more arbitrary
the anomaly becomes, so the effect of the representation
on the results. The time-value representation and histogram
work best with LOF with F1 up to 0.89 while the encoded
representation provides no additional benefit. The manual
representations work poorly with RForests while the encoded

ones yield F1 scores of up to 0.92. The aggregated features
and encoded frequency domain representations work best
with OC-SVM with F1 = 0.9 and F1 = 0.93, respectively.

d: SlowD ANOMALIES
For SlowD observed in Table 8, all representations pro-
duce high F1 scores of above 0.9 with all supervised ML
approaches. The time-value representation performs best
with LR yieldingF1 = 0.97, while all time-value, aggregated
and histogram features work well with RForest and SVM
yielding an F1 score of above 0.97. This anomaly type is
relatively more difficult to be detected using frequency rep-
resentation when supervised approaches are considered.

For unsupervised approaches, no representation works
well with LOF while all manual representations perform
modestly with F1 scores of up to 0.71. However, in some spe-
cific cases, the encoded representation achieves higher detec-
tion performance. For instance, time-value encoded with
IForest yields an F1 score of 0.91, while aggregated encoded
yields an F1 score of 0.95 with OC-SVM. All encoded rep-
resentations perform better with OC-SVM compared to their
non-encoded counterparts.

B. PERFORMANCE ANALYSES OF ML APPROACHES
We now analyse the detection performance of the ML
approaches described in Section VI on all the anomaly types
proposed in Section IV. By using Tables 5, 6, 7 and 8 we per-
form an analysis across rows, unlike the cross-column anal-
ysis performed in Section VIII-A for data representations.
While in SectionVIII-Awe already explained, as an example,
how the LR approach works on our anomaly dataset, this
section elaborates, as an exemplifying analysis, on what the
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tree based ensemble learns.We selected the tree based ensem-
ble as it is also easily explainable and tractable similar to LR.
For the start, we remark the following major observations.
• For a given anomaly type, there is no major difference
between the three selected supervised approaches.

• Among the unsupervised approaches, OC-SVM per-
forms the best F1 scores, closely followed by IForest,
whereas LOF typically performs the worst F1 scores.

1) SuddenD ANOMALIES
According to Table 5, the supervisedmodels are able to detect
SuddenD anomalies more accurately than the unsupervised
models. All three supervised models have achieved near per-
fect F1 score of 0.99 on all data representations.

The tree based ensemble models, such as supervised RFor-
est and unsupervised IForest, learn a set of trees and sub-
sequently use a voting mechanism on the decision of each
individual tree to determine the final class. A tree that is
the fundamental part of the two ensemble models also learns
which features are the most important ones. The feature with
the highest discrimination power (weight) is situated at the
root of the tree, then on the left and right nodes, as it can
be exemplified in Figure 14, the next two important features
are placed and the process follows until a certain stopping
criterion is met. In our specific case, the trees learn the
thresholds for particular values in the feature vector. For
instance, depicted in Figure 14, it can be seen that if the value
at position 290 in the time-value representation, denoted by
X290, is below −92.5, then the link is anomalous, otherwise
it is a normal link. This simple rule is able to correctly detect
n = 596 anomalous links and n = 1520 normal links while
only misclassifying 7 links, thus the performance of that tree
alone is F1 = 0.99.

FIGURE 14. An exemplifying decision tree for the detection process of
SuddenD anomaly.

The SVM models are more complex and difficult to visu-
alize when a feature vector has more than 3 dimensions as it
is the case with all manual and autoencoded representations
used in this paper. SVMs essentially compute a hyperplane
that attempts to separate the N-dimensional feature vector
according to a criterion, such as the labels.

FIGURE 15. A part of the decision tree while detecting SuddenR anomaly
over time-value representation.

Among the unsupervised approaches, OC-SVM is able
to achieve F1 scores close to the supervised approaches,
for instance 0.98, 0.96 and 0.90 on FFT, histogram
and time-value representations, respectively. For OC-SVM
model, with the aid of autoencoder the time-value represen-
tation is transformed to an important summary of the data by
removing the noise and repetitions, leading to a performance
increase from F1 = 0.83 to F1 = 0.96. Next, IForest
achieved a lower performance with an F1 score between 0.61
and 0.83, the latter on the aggregated representation 0.83
while the LOF performance reached 0.76 on one occasion.

2) SuddenR ANOMALIES
Compared to SuddenD, SuddenR gains a steep recovery
slope, while the duration and occurrence are more random.
The results in Table 6 show that supervised models are able
to detect SuddenR more accurately than the unsupervised
models. F1 score of supervised models ranges from 0.89 with
LR on time-value representation to near perfect F1 score for
remaining supervised approaches. Using encoded represen-
tation of the time-values improves the performance also in
the case of LR to 0.99, which corresponds to an about 11%
improvement. For the LR case, as discussed in Section VIII-A
and depicted in Figure 11, the most important features are
the ones that attempt to capture the random drops between
packets 25 and 275.

A decision tree representing RForest and IForest ensem-
bles is portrayed in Figure 15 for the time-value represen-
tation of the SuddenR anomaly. It can be seen that the
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FIGURE 16. A part of the decision tree while detecting SuddenR anomaly
over aggregated data representation.

most discriminative data points are X189, X147, X86 with
−93.5 dBm RSSI threshold. The tree can grow very deep,
eventually over-fitting the data, however, as discussed in
Section VII, we undertook standardmethods for avoiding that
in the experimental design. Figure 16 presents an example
tree learnt on aggregated feature representation. Similar to the
tree in Figure 14, it is simple and effective, where it compares
minimal RSSI to−94.407 dBm threshold to decide whether it
is anomaly or not. Figure 17 shows a tree learnt using the his-
togram representation as input. While performance is similar

to the previous representation, we see that using aggregated
representation requires less number of decisions, i.e., depth
of tree, for effective anomaly detection. Similar observations
can be made for the tree learnt on fft representation for this
anomaly type depicted in Figure 18.

Among the unsupervised approaches, OC-SVM, without
encoded representation, is able to achieve an F1 score of
around 0.90 on average through all four representations,
which is almost on par with supervised approaches. IFor-
est, on the other hand, performs much better with encoded
representations, where the most significant improvement is
presented on time-value representation ramping its F1 score
from 0.21 to 0.86. Since SuddenR is limited in duration and
thus affecting less number of features, LOF is able to pull
ahead in time-value and histogram representations, where it
reaches an F1 score of above 0.93.

3) InstaD ANOMALIES
In contrast to SuddenD and SuddenR, InstanD appears as an
anomaly with extremely short duration (pulse). The results
in Table 7 show that supervised approaches are slightly better
at InstaD classification. F1 performance score of supervised
approaches is slightly worse (up to 0.98) from what we have
seen for SuddenD or SuddenR detection performance. Due to
the arbitrary characteristics of this anomaly type, the F1 score
is diminished further when the supervised approaches are

FIGURE 17. A part of the decision tree while detecting SuddenR anomaly over histogram representation.
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FIGURE 18. Decision tree for detecting SuddenR anomaly using FFT
representation.

FIGURE 19. A part of the decision tree while detecting InstaD anomaly
over time-value representation.

trained with the time-value and frequency domain represen-
tations as outlined in Table 7.

To better understand decision making on classifying the
InstaD anomaly, we examine a decision tree representing
RForest and IForest ensembles as depicted in Figure 19.

Due to the random nature of this anomaly, the tree selects
random points and verifies their value against a learnt thresh-
old. For this particular tree, feature X148 that is compared to
−91.50 dBm RSSI threshold is selected in the root. Then,
it followswith the comparisons of the features in order ofX184
andX188 that are compared to−91.50 dBm and−90.50 dBm,
respectively and this process terminates when the final depth
of the three is reached. For this anomaly type, time-series and
FFT domain may not be the optimal data representations for
the sake of developing a reliable and non-overfitting model.

Among the unsupervised approaches, there is no clear
best approach. The top five performing models are OC-SVM
using encoded FFTwith 0.93 F1 score, IForest using encoded
aggregated features with an F1 score of 0.92, OC-SVM using
aggregated representation with an F1 score of 0.90, and LOF
using histogram representation and IForest using encoded
FFT, both achieving an F1 score of 0.89.

4) SlowD ANOMALIES
In contrast to SuddenD, SuddenR and InstaD, SlowD does not
appear instantly, but rather gradually with random slope. The
results in Table 8 show that supervised approaches are still
superior to unsupervised ones. For supervised approaches,
the average F1 score, ranging between 0.90 and the perfect
score, is slightly better than InstaD, but slightly worse than
SuddenD and SuddenR. The most notable drop in perfor-
mance is observed with LR approach over aggregated, his-
togram and frequency representations.

To better understand the underlying reasons behind the
detection performance, we visualized in Figure 20 a typi-
cal decision tree learnt on the time-value representation of
this anomaly. It can be seen from the figure that the tree
commences with a comparison of feature X282 (282nd item
in time-series) to the threshold of −92 dBm. By doing so,
it tries to distil anomalous samples at the end of the series,
since samples with SlowD anomaly are suppose to have lower
value towards the end of the time-series. However, as the first
pie-chart reveals, this is not always the case, since some of
the fully functioning non-anomalous (normal) links in the
dataset have average RSSI close to that threshold, which
leads to a high misclassification rate. In the second step of
decision making, the process is repeated by comparing an
earlier feature X64 against −89.70 dBm threshold. The tree
continues to learn according to this pattern until a stopping
criterion is met.

Among the unsupervised approaches, according to Table 8,
the best approach is OC-SVM with best F1 scores from
0.71 to 0.95, followed by IForest with best F1 scores from
0.63 to 0.91. LOF, as an alternative unsupervised candidate,
has poorly performed over all scenarios.

C. LIMITATIONS
We identify three main limitations that apply to this treatise,
and to the best of our understanding also to most of the
other related works in wireless network and IoT anomaly
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FIGURE 20. A part of the decision tree while detecting SlowD anomaly over time-value representation.

data that do not target real-world application data, such as
measurements.

1) LIMITATION 1
Every ML-based tool needs sufficient data for training and
evaluation. Quantifying ‘‘sufficient’’ is difficult but in general
it means that themodel needs to see enough training examples
to be able to accurately approximate the underlying distri-
bution. Intuition would say that the data that is ‘‘sufficient’’
to learn a normal distribution would be smaller in size than
the data needed to learn an exponential distribution. While
synthetic data is useful to develop a proof of concept, for
anything more than that real data is required. To the best of
our knowledge, only few related works consider real-world
data [26] and none of them considers link layer traces.

In this study, we developed the ML models using
IEEE 802.11 traces available from a public dataset as
the motivation data from LOG-a-TEC contains only
11 IEEE 802.15.4 traces all depicted in Figure 21. Table 9
shows how the LR model developed on IEEE 802.11 traces
performs on the IEEE 802.15.4 traces. The first column of

TABLE 9. Predicted anomalies on validation data, as illustrated
in Figure 21.

the table lists the LR model corresponding to the anomalies
defined in this paper while the second includes the subfig-
ures with links that were classified as having the respective
anomalies. It can be seen from the first row of the table that
the SuddenD degradations in the IEEE 802.15.4 traces are
detected correctly and they appear in the links represented
in Figures 21c and 21i, while for the other degradations the
models seem to generate false positives.

According to the second row of Table 9, it can be seen
that the links represented in Figures 21c and 21f have been
classified as SuddenR. However, when visually inspecting the
links in those respective subfigures it can be seen that they
are both classified as false positives. It is hard to determine
the reason for misclassification since none of the classified
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FIGURE 21. Anomaly detection validation test employed over real-world measurements gleaned from the LOG-a-TEC testbed, where for example, as in
(g) N16→N17 indicates a communication link between nodes 16 and 17.

traces even remotely resemble SuddenR anomaly presented
in Figure 4a.

As per to the third row of Table 9, we observe that the
two links that are detected as having InstaD anomaly are

false positives. As also discussed in Section VIII-A and
Figure 12a, the weights change dynamically and arbitrarily
for such anomalies, and thus no distinct pattern can be readily
detected.
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Finally, the last row of the table shows that a large num-
ber of 802.15.4 links are falsely classified as having SlowD
anomalies. While we can see that the trace in Figure 21b
contains a slightly descending slope predicted to be SlowD
anomaly, this model produces false positives over the other
traces in Figure 21. As discussed in Section VIII-A, the dis-
criminative importance of the features for the detection of
SlowD is sought in the last part of the signal trace. This is why
Figures 21c and 21i, and to some extent Figures 21e and 21f
are inevitably misclassified, since they contain lower values
in the last portion of the trace.

As a conclusion, the learnt models on the relatively limited
IEEE 802.11 traces are not directly and reliably transferable
to the IEEE 802.15.4 traces, which indicates that the devel-
oped models cannot be readily generalized across various
technologies and possibly for distinct applications.

2) LIMITATION 2
The architecture of the autoencoder that learns the encoded
features has been selected for a small number of candidates
as a result of the trial-and-error method. Having more data
would enable training an autoencoder, which then can be
better generalized for even unseen examples. Autoencoder
optimization and end-to-end deep learning for the proposed
anomaly types might bring further insights into develop-
ing better performing and more reliable anomaly detection
models. However, as hyperparameter search in deep learning
is challenging and needs a large amount of training data,
we leave such optimization for the future work.

3) LIMITATION 3
In this study, we only developed offline models that would
need to be periodically retrained in real-world applications in
order to account for the dynamically changing environments,
which are the inherent characteristics of wireless networks.
This leads us to online models that can learn from continuous
incoming (streaming) data. Roughly speaking, offline models
outperform online counterpart models in terms of the required
computational power, albeit online models are able to rapidly
adapt to the changes within the application environment in an
automated way thus simplify the detection system that would
otherwise need to periodically re-train and update the offline
models.

IX. CONCLUSION
In this paper, we introduce four types of anomalies that can
be present in wireless links and are useful for being detected
in real-world operational IoT deployments. We demonstrated
that these anomalies were exposed on a real-world IoT
deployment, namely the LOG-a-TEC testbed, and they sig-
nificantly affected the expected operations of the testbed.
Motivated by this, we develop detection models for each type
of anomaly by considering five different data representations
and six different ML techniques. We performed an extensive
relative evaluation of the models from data representations
andMLmodels perspective, and the limitations of our models

are discussed. The resulting tool-set for anomaly injection,
feature generation and model development are made publicly
available for reproducibility.

Our study reveals that with respect to the data representa-
tions; i) none of the four manually generated features clearly
dominates the remaining ones in terms of anomaly detection
performance, and ii) in most cases, automatically generated
encoded data representations improve anomaly detection per-
formance by up to 40% compared to their non-encoded coun-
terparts.
With respect to the selected ML approach, our results

demonstrate that; i) there is no major difference among the
selected supervised ML approaches, where all are capable of
detecting anomalies with F1 scores of above 0.98, and ii) the
unsupervised approaches are also able to detect anomalies
with F1 scores of, on average, about 0.90 and OC-SVM
outperforms all the other unsupervised ones reaching at
F1 scores of 0.99 for SuddenD, 0.95 for SuddenR, 0.93 for
InstaD and 0.95 for SlowD.
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