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Abstract 

This paper presents a novel protection strategy for assuring power-system frequency stability. After many years of use, the 

existing (static) under-frequency load-shedding concept has proven to be reliable and fast. However, it does not adapt well to 

volatile operating conditions, which might often lead to a system collapse. This developed into a major obstacle, since 

operational conditions of modern power systems are persistently subjected to fast and unpredictable changes. Therefore, there 

is a need to introduce a new capability in under-frequency load-shedding that would be able to fine-tune the mismatch in 

active power in any conditions. From the practical aspect, a systematic implementation of improvements should not threaten 

system stability. In terms of cost, a minimum intervention in the existing concept is desirable. This is why we developed an 

effective upgrade of the existing concept by introducing a specialized group of intelligent electronic devices supported by a 

principal component analysis technique. This group should be operated alongside the existing solution to monitor the actual 

frequency conditions and to take over power-balancing when fine-tuning is required. This supports the existing load-shedding 

and improves the process of frequency stabilization.      

 
Index Terms 

Adaptive protection, demand side response, intelligent monitoring, load shedding, machine learning, power system frequency 

stability, power system protection.  

I.  Introduction 

The electric power system (EPS) is one of the largest man-made artificial systems on the planet. It enables a quality of life 

that was never before available to the humankind. Since electrical energy is an integral part of our daily lives, any long 

blackouts have major negative social and economic impacts [1]. Therefore, power engineers are constantly striving towards 

improving the EPS performance. To mitigate the consequences of EPS malfunctions and most severe incidents, System 

Integrity Protection Schemes (SIPS) are implemented. One of the protective measures associated with SIPS is ensuring the 

frequency stability of EPS using under-frequency load-shedding (UFLS) [2]. The main objective of UFLS is to restore the 

balance between the generated and the consumed active power after a major deficit takes place. This is achieved by temporarily 

limiting the supply of electric energy to consumers. 

 

After many years of use, we are able to recognize both the positive and the negative features of the existing 

(conventional/static) UFLS. The positive features are reliability, robustness and speed, while rigidness and inadaptability are 

negative. An analysis of past events revealed that the existing UFLS tactic is often not capable of handling the power imbalance 

with satisfactory precision, since its settings are static [3]. These are periodically checked and modified against potential 

changes in the network (on a yearly basis or even longer), but this does not take into account the variations in operating 

conditions in a day, a week or a season. These variations are becoming more evident, mostly due to the developments and 

dynamics of electricity markets and the increased penetration of intermittent renewable energy sources. Therefore, certain 

measures have to be taken to modify the static UFLS concept in order to successfully accommodate the new uncertainties. 

Our suggestion is adding a dynamic UFLS stage, which is described in detail below.   

A.  Review of existing concepts 

A comprehensive review of state-of-the-art UFLS is [4], which is recognized as a very important contribution to UFLS from 

the aspect of literature classification. After thoroughly studying [4], which we used as our main guideline, we were able to 

narrow down the vast number of existing UFLS approaches. This resulted in no more than three groups of principles for 

tackling the problem of poor adaptability.  

 

The first group of principles includes increasing the number of static UFLS stages, which is only effective up to a certain 

point. The cause for this is that static UFLS stages might begin to overlap due to (inherent or intentional) time delays. 

Regulations usually limit the number of static UFLS stages for this very reason (e.g. [2]), so it is hard to find schemes with 
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more than ten stages in practice [5]. Additionally, an upgrade like this would require a long re-parametrization of the overall 

set of relays.  

 

The second group of principles involves the use of wide-area monitoring system (WAMS), which provides a valuable amount 

of information for better decision-making. Advanced approaches were created to determine the amount of load shedding: 

taking advantage of the swing equation [6, 7], a system frequency response model (SFR) [8], power-flow tracking [9], the 

artificial neural network [10], fuzzy logic [11] and decision trees [12]. It also offers more possibilities to distribute the required 

load-shedding quantities among substations. For this task, [7] utilizes a mixed integer linear programming optimization 

technique, taking into account load availability and compensation prices offered by customers. The method in [13] calculates 

the wide-area index from the recorded voltage and reactive power data, whereas [9] considers the distribution factor and the 

priority of the loads. On the other hand, [10] makes decisions based on the electrical distances to the fault. The authors in [14] 

took a different approach: they used a voltage threshold in addition to the pre-set frequency threshold for UFLS activation. 

[15] checks if the EPS trajectory violates the stability boundary defined in the frequency versus the rate-of-change-of-

frequency (ROCOF) phase plane, while [6] monitors the predicted frequency nadir against a minimum frequency threshold. 

Decisions are taken in a centralized location, which means that there is a risk of failure in the communication network to 

deliver accurate data in time. 

 

The third principle is based on a thorough and often mathematically complex modification of the entire UFLS involving 

numerous under-frequency relays across the EPS. [16] proposes a decentralized multi-agent system based UFLS, where each 

agent shares the information about the difference between the generated and the consumed active power with neighbouring 

agents. They achieve consensus using the average consensus theorem and additionally use a particle swarm optimization 

algorithm to optimize the coefficients for information exchange. [17] uses a voltage deviation of load buses to determine the 

frequency threshold of each UFLS relay, whereas [18] proposes the continuous UFLS scheme to shed loads in proportion to 

the frequency deviation. [18] and [19] both suggest that analytical proof for UFLS scheme efficiency is required. However in 

this paper, we decided to use an extensive amount of case studies instead. One of the reasons for this decision is that we 

wanted to take into account complex dynamics of the EPS, which is usually neglected in similar analytical proofs. Authors in 

[20] estimate the frequency evolution in each relay by fitting the 2nd order polynomial and adjusting the frequency thresholds 

according to the estimated frequency nadir. The methods listed are mostly problematic from the financial point of view and 

due to potentially poor transparency. 

 

It is also possible to formulate the conventional UFLS setting as an optimization problem for different EPS operating points. 

Solving the optimization problem (minimization/maximization of an objective function) provides the setting of conventional 

UFLS stages that gives the best results in average, e.g. on a yearly basis (corresponding to a global optimum of an objective 

function) [21-27].  However in terms of UFLS, this does not assure 100% efficiency, since it is always possible to pinpoint 

certain conditions in which conventional UFLS operates ineffectively, despite the optimization.  

B.  Paper contributions 

The idea originates from the fact that the conventional UFLS is the most straightforward and the most commonly implemented 

UFLS scheme in use. It was proven as robust and reliable many times in the past. However, its inflexibility is also undisputable. 

This is why the aim of this paper was to find a cost-effective UFLS solution that involves state-of-the-art intelligent electronic 

devices (IED) and machine-learning technologies on one hand and keeps the positive features of conventional UFLS on the 

other. We especially took into consideration that several existing frequency relays in many EPSs still have older designs. 

 

Therefore, the first scientific contribution of this paper is a novel and less intrusive UFLS method (from the implementation 

point of view) that supplements conventional UFLS by applying state-of-the-art IED and machine-learning technologies. IEDs 

operate alongside conventional UFLS relays and take action only when their machine-learning algorithm recognizes the need 

to do so. Therefore, IEDs act as an added dynamic UFLS stage, whereas the static UFLS remains unchanged. The second 

scientific contribution is a four-step algorithm for advanced operation of modern IEDs in UFLS. The algorithm provides the 

IEDs with a high level of situational awareness based purely on locally obtained information/measurements. The third 

contribution relates to an innovative use of the SFR model in the algorithm, i.e. for the real-time estimation of the forthcoming 

frequency in IEDs and self-adjustment of its triggering parameters. Furthermore, consumers taking part in such a dynamic 

stage could be included in a demand-side response program [7, 14] supported by appropriate contracts. The other option would 

be simply to choose the feeders from the existing load priority lists, as is usually the case in conventional UFLS philosophy. 

II.  Methodology 

The conceptual role of the dynamic UFLS stage inspired the authors to name it the libero UFLS stage (L-UFLS). The term 

libero is used in volleyball jargon for a free defender, a player that is specialized in defensive skills but is still only one of six 

players on the field (an analogy to static UFLS). 

 

As previously explained in Section I.  , each IED involved in L-UFLS is equipped with a novel algorithm, which is running 

online. The algorithm is performed in four steps (see Fig. 1). In the first step, real-time frequency measurements are processed 
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with a pattern-recognition procedure (machine learning technique) in order to establish which frequency-related conditions 

are present at that particular point in time. This way, IED is able to distinguish between several most characteristic frequency-

related conditions in real-time. In the second step, we feed the same set of measurements into a fitting process. Its task is to 

select the parameters of a system frequency response (SFR) model [28], so that the SFR response tightly corresponds to the 

input measurements. This way, we are able to obtain an estimate of the forthcoming frequency trajectory when no UFLS is 

expected to intervene. It is important to note that the prediction error increases when observing the frequency trajectory further 

down the timeline, but it is within acceptable limits when we are interested in conditions a couple of seconds in advance (see 

Section II.  C.  ). This is why in the third step, a frequency-trajectory forecast is used to establish the expected time DT and the 

frequency DF margins for the individual forthcoming static UFLS stages. Both margins are combined into a “take-off 

characteristic”, providing final information on whether the static UFLS already handled most of the power imbalance. If it 

did, L-UFLS is set to intervene and fine-tune the power balance in the fourth step by modifying its frequency thresholds. 

A.  Achieving situational awareness by machine learning 

In order to expect a sound and reasonable action from an IED, it must first be introduced to a satisfactory level of situational 

awareness. Since we are referring to frequency-related conditions, it is best to examine a possibility for detecting a power-

imbalance incident as a main event.  

 

The literature contains several approaches for the detection of an initial frequency drop. They can be sorted into several 

categories, using: i) fixed frequency threshold [29], ii) frequency change and accumulation of frequency change over time [7], 

iii) average energy of the measured frequency signal calculated from the fast Fourier transform (FFT) analysis [30], iv) 

ROCOF [31] and v) machine-learning techniques [32]. All but the latter detect the initializing incident when a certain variable 

violates a pre-set threshold. Since incidents that cause a frequency drop have different characteristics and sizes, such 

approaches are often insufficient for efficient detection [30, 32]. This is why we focused on (unsupervised) machine-learning 

techniques, more specifically on principal component analysis (PCA) [33]. PCA has proven to be a suitable recognition 

method in many fields, such as image processing, pattern recognition, classification and anomaly detection [34, 35]. 
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Fig. 1.  Flowchart of the proposed UFLS algorithm 

 

PCA [34, 35] is a statistical machine-learning tool that uses an orthogonal transformation to convert m sets of observations X 

= [X1…Xm] described by n variables Xi = [x1…xn] into a new, smaller linear-space X̃i = [x̃1…x̃n] – the principal subspace (grey 

area in Fig. 2). The transformation is performed in such a way that the orthogonal projection of the original data points (grey 

blank dots in Fig. 2) onto the principal subspace minimizes the sum of squared error of the projections (e.g. distances between 

the original and transformed data points indicated with the grey line in Fig. 2). X̅ in Fig. 2 represents the mean value of the 

transformed data and vectors u1 and u2 the first two principal components. Thus, PCA decomposes the observation matrix X 

into a score matrix T and a loading matrix P: 
T T T

1 1 j j...=  + =  + +  +X T P E t p t p E ,  (1) 

where ti are score vectors, pi are loading vectors, E is the residual matrix and j the number of principal components. 

 

In a principal subspace, similar observations (in our case, frequency-related patterns representing an input to PCA) form a 

dense cluster of points (k). If real-time frequency measurements Xmeas are transformed into the same subspace, similarities to 
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any previously known conditions (output of PCA) can be found by using any distance metric classification algorithm (e.g. k-

nearest neighbours, Euclidean, Cityblock, Cosine, etc.). Therefore, the performance of PCA-based pattern recognition depends 

on the quality of the pre-existing database used as a reference frame for comparison. This is why a database should include a 

large dataset of several frequency recordings captured during the pursued incidents and conditions. To obtain these, we ran 

numerous offline dynamic simulations. It should be kept in mind that there is no reservation against supplementing the 

database with real measurements. 

 
Fig. 2.  A graphical representation of a PCA transformation principle 

 

Fig. 3a depicts an example of an EPS frequency response after the occurrence of two sequential power-imbalance incidents, 

both within 10 seconds (simulation time t = 4.80 sec and t = 13.60 sec). A closer look reveals that a conventional UFLS was 

triggered six times (twice after the first incident and four times after the second incident) before the frequency was finally 

stabilized. Along the resulting frequency trajectory, eight characteristic patterns that were included in the database are labelled 

with numbers from 1 to 8. There is a prerequisite for the IED to monitor the frequency in terms of a sliding window and the 

following question quickly appears: What window length is the most appropriate for our purposes? To provide the answer, 

we must take into account the following facts: i) IEDs are installed in individual substations where the measured frequency is 

subjected to local oscillations [36], ii) frequency measurements contain a certain amount of noise [37] and iii) the duration of 

different dynamic phenomena in the frequency measurements might vary significantly [37]. To approach the reality, we added 

a Gaussian noise to the simulated frequency – see Fig. 4. A comparison to PMU measurements from a real EPS confirms that 

the added noise is adequate. 

 

Our analysis stressed the limitations for the sliding window. It should be narrow enough to detect rapid frequency changes on 

one hand and wide enough to not be affected by electromechanical oscillations and measurement noise on the other. It became 

apparent that in order to satisfy these conditions, more than one sliding window should be used, with each of them having a 

different length. 

 

Fig. 3b and Fig. 3c show a typical testing of the PCA recognition algorithm, with and without measurement noise in the input 

frequency data, respectively. The black dots represent recognition results with a 0.5 sec sliding window and grey dots represent 

recognition results with a 3 sec sliding window. The grey lines in the background indicate the actual frequency trend and 

appear useful for a first-glance orientation. The results show that by using a narrower window, the detection algorithm 

correctly distinguishes between all frequency patterns when there is no noise in the input signal. However if noise is present, 

size of the sliding window becomes more important. We will for example first focus on a 0–4.80 sec period. A wide-window 

algorithm correctly detects pattern 1 (steady-state), whereas the narrow-window algorithm erroneously recognizes the 

situation as either pattern 2 (power imbalance), pattern 3 (frequency decreasing) or pattern 7 (frequency increasing). The 

downside is that a wider window delays recognition, which is evident when the second power imbalance occurs. A wider 

window detects the second change in a main trend (transition from pattern 7 to pattern 3) 180 msec later than the narrower 

window. As expected, a wider window appears more appropriate for main frequency trend monitoring, whereas a narrow 

window is able to detect individual events (such as pattern 2). It is therefore necessary to combine recognition results from 

both windows in order to overcome noisy environmental conditions and eliminate false classifications, while at the same time 

maintaining a sufficiently high recognition speed. For instance, if a narrow window categorises an event as a power imbalance 

and the wider window categorises it as steady-state, it is reasonable to trust the wide-window classification. 
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Fig. 3.  EPS frequency-response patterns used during recognition process (a), recognition results considering individual 

sliding-window lengths (b, c) and T2 statistic (d, e) 

 

To further increase the recognition algorithm robustness, we have applied Hotelling’s T2 statistic, which is often utilised for 

disturbance identification [38]. The T2 statistic is a scaled, squared 2-norm of an original sample from its mean value, as 

shown in Fig. 2. It is calculated as follows: 
2 1 T 1 T T

i i i i iT − −=   =    t Λ t x P Λ P x ,  (2) 

where ti is the i-th row of the j score vectors from the PCA model, and Λ-1 is a diagonal matrix containing the j eigenvalues. 

Fig. 3d and Fig. 3e show the T2 statistics for the selected case, with and without the noise in the input frequency measurements. 

Extreme values in both graphs indicate power imbalance and load shedding. To accurately detect these two events, a fixed 

threshold was used, so that a balance was found between avoiding false detections and missing a detection (as for example in 

Fig. 3d, where the second load shedding was not detected). 
 

 
Fig. 4.  Real EPS frequency measurement from two different PMUs and frequency simulation with added Gaussian noise  

B.  A system frequency response model 

A SFR model was first introduced in [28] and was utilized in several publications since then. However, it has never been used 

for obtaining a short-term frequency trajectory prediction. As illustrated in Fig. 5, a SFR model consists of two main parts. 

The first part describes the average behaviour of the speed governors and the turbines, whereas the second part describes the 
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behaviour of the EPS and electrical loads. SFR was developed to average the dynamic behaviour of multiple synchronous 

machines into an equivalent single-generator unit model. It filters out all inter-generator oscillations and provides the average 

EPS response.  

 

The purpose of a fitting process of the input frequency measurements f(t) to SFR fSFR(t) was to estimate the unknown 

parameters of the SFR using the least-squares method:  

( ) ( )( )
end

start

2

SFR
min 

t

k t

f t f t
=

− .  (3) 

 

The fitting is initiated only after the power imbalance is detected, which defines the moment denoted by t = tstart. Denotation t 

= tend on the other hand refers to the last available real-time measurement (see Fig. 6). Mathematical rules dictate that in order 

to obtain the first fitting after the imbalance occurs, at least as many frequency measurements must be recorded as there are 

unknown parameters in the SFR model. To ensure that a fit is always possible, limit values have to be imposed on individual 

parameters. 
 

 
Fig. 5.  A conceptual representation of a SFR model [28] 

 

It is a fact that in various countries around the world, different electricity-generating technologies are dominant. These in turn 

react differently to power imbalances due to the underlying technological processes. Several different SFR models exist in the 

literature and a thorough analysis had to be made prior to selecting one of them in our algorithm. This is why we describe 

seven different SFR models, which are mathematically limited with polynomials up to the third order, mainly for two reasons: 

i) to decrease computational effort and ii) to capture the main frequency trend. 
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    i)  SFR model considering thermal power plants 

One of the first SFR models found in the literature was proposed by Anderson and Mirheydar [28] in 1990. It is often 

used in frequency stability analysis and UFLS protection design. This model assumes the dominance of steam reheat 

turbines and neglects the effect of the excitation system, voltage dependence of the loads, nonlinearities of the turbine-

governor model and all but the largest time constants. The frequency response ω is [28]: 

( )

( ) ( ) ( )
d R

2

R R m H R m

1
( )

2 2

RP T s
s

HRT s HR DRT K F T s DR K


+
 =

+ + + + +

,(4) 

where R stands for governor control, Pd disturbance power in p.u., D damping factor, H inertia constant in sec, Km 

mechanical power gain factor, FH fraction of the total power generated by the turbine and TR reheat time constant in sec. 

    ii)  SFR model considering hydro power plants 

In many countries, a large part of electricity is supplied by hydro power plants. To represent their response, we use the 

linearized IEEEG3 model that adopts a linear turbine model [39]. Its frequency response can be calculated as follows: 

( ) ( ) ( )

( ) ( )( ) ( )( )R W

G T P R W P

1
2

1 11
2 1 1 1 0.5

( )
1

Hs D

T s T s

Hs D T s R R T s T s R

s +

+  −

+ +  +  + 

 =
+

,  (5) 

where RT is temporary droop, RP permanent droop, TW water inertia time constant, TR dashpot time constant and TG main 

servo time constant. 

−+


TURBINE 

MODEL

accelerating 
power

mechanical 
power

disturbance 
power

SPEED GOVERNOR 

MODEL

Δωref  

frequency 
deviation

speed 
reference

Pd

Pm Pa Δω 1

2Hs

D

−

ROTOR/LOAD



 7 

    iii)  General SFR model 

In reality, we usually deal with a combination of several different types of power plants. Therefore, the simultaneous 

presence of various electricity sources was analysed and suggested by the authors in [40] in the form of a 

turbine-governor transfer function: 

( ) m

m j i I

1 1

,  1,  1
J I

J j I i

j i

P
G s b s a s a J I

f

− −

= =

 
= = = = − 

  
  , (6) 

where ai and bj are the coefficients of the transfer function. The frequency response f is then calculated as follows: 

( )
( ) ( )

d

D L

D m

,  
2

P
f s K D K

Hs K G s
 = = +

+ +
,  (7) 

where KL is the frequency coefficient of the load. The value I determines the transfer function order and was varied from 

1 to 3 (used as index in the continuation).  

    iv)  A 3rd order EPS transfer function  

Inspired by the previous model, we constructed a similar transfer function. Its order in the nominator equals the order in 

the denominator: 

( )
3 3

d i j

1 1

 i j

i j

f s P a s b s
= =

 
 =   

 
  ,  (8) 

where ai and bj are the coefficients of the transfer function.  

    v)  Estimation of the frequency-response 

The EPS frequency response in the time domain depends on the number and the type of poles of the transfer function 

used for the representation of the average network behaviour [41]. According to this, we are able to estimate/guess the 

response. We assume a real and complex conjugated pair of poles, resulting in the following time-domain response: 

( )( ) cosC t E tt A B e D e F t G   = +  +    + ,  (9) 

where A, B, C, D, E, F and G are the adjustment parameters. 

C.  Forecasting the forthcoming frequency-trajectory and a prediction error analysis 

A satisfactory fit of the selected SFR model with frequency measurements enables us to forecast the forthcoming frequency 

trajectory when no UFLS activation is expected. To verify the forecast accuracy with different SFR models described in 

Section II.  B.  , we compare the estimated frequency trajectory fSFR with the actual frequency trajectory f obtained by the 

dynamic simulation. The prediction error ERR was observed by varying the prediction time horizon (Tpred = 1 sec, 5 sec and 

10 sec, respectively) – see Fig. 6:   

SFR pred pred( ) ( )ERR f T f T= − .  (10) 

 

In Fig. 6, the power imbalance invokes the frequency drop, which is detected at t = tstart. The static UFLS thresholds fTH,i are 

distributed among 48.0 and 49.0 Hz and inactive, whereas dynamic L-UFLS hibernates at the frequency-stability limit of 47.5 

Hz. The forthcoming frequency-trajectory is predicted at t = tend and there is a clear mismatch between the actual future 

frequency trajectory (dashed purple curve) and the predicted one (dashed green curve). The boxplot in Fig. 7 summarizes the 

results, where the SFR fitting was performed by taking into account the SFR parameter constraints in TABLE I. The analysis 

included the prediction error of individual SFR models for numerous cases that differ in network topology, power plant types 

and governors. 
 

 
Fig. 7.  Frequency prediction error ERR of different SFR models with a variable prediction time horizon Tpred 

Negative/positive error values in Fig. 7 mean that the prediction assumed a more or less severe frequency drop when compared 

to the actual conditions. Fig. 7 shows that the greater the prediction time Tpred is, the greater the prediction error ERR is. The 

average error ranges from –80.1 mHz to +16.9 mHz for Tpred = 1 sec, from –210.2 mHz to +470.1 mHz for Tpred = 5 sec and 

from –259.8 mHz to +733.1 mHz for Tpred = 10 sec. Most of the outliers (black dots in Fig. 7) originate from the first few 

frequency estimates when the number of frequency samples is scarce and the IED finds it extremely difficult to calculate the 

electrical frequency due to underlying transients. 
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TABLE I 

PARAMETER CONSTRAINTS OF DIFFERENT SFR MODELS USED DURING THE FITTING PROCESS 

SFR 

MODEL 
PARAMETER CONSTRAINTS 

i Pd H D R Km FH TR 

-0.5 3 0 0.03 0.8 0.1 4 

0.0 20 8 0.60 1.2 0.4 14 

min 

max 

ii Pd H D RT RP TW TR TG 

-0.5 3 0 0.3 0.01 0 2.5 0.001 

0.0 20 8 20.0 0.30 5 25.0 1.000 

min 

max 

iii1 Pd H KD a0 a1 a2 b0 b1 b2 

-0.5 3 4 10 / / 3 / / 

0.0 20 15 50 / / 190 / / 

min 

max 

iii2 Pd H KD a0 a1 a2 b0 b1 b2 

-0.5 3 3 50 20 / 100 3 / 

0.0 20 15 300 50 / 200 20 / 
min 

max 

iii3 Pd H KD a0 a1 a2 b0 b1 b2 

-0.5 3 4 0 60 15 0 20 5 

0.0 20 15 100 150 60 100 100 15 

min 

max 

iv Pd a0 a1 a2 a3 b0 b1 b2 b3 

-0.5 0 0 0 0.9 0 0 0 0.9 

0.0 100 100 100 1.1 100 100 100 1.1 

min 

max 

v A B C D E F G 
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D.  Setting-up a take-off characteristic 

 

Once the forthcoming frequency-trajectory is available with no UFLS intervention accounted for, IED is able to observe the 

remaining time DT before each (i-th) forthcoming static UFLS threshold fTH,i is expected to be reached (see Fig. 6, in which 

DT is depicted for index i = 2) as follows: 

i end UFLS,   = 1...DT t t i N= − ,(11) 

where ti is the time of the expected breach of the static UFLS stage, tend is the real time and NUFLS indicates the overall number 

of static UFLS stages. If the frequency has already passed a certain threshold or a threshold violation is not expected in the 

future, we assign a large default value to ti (e.g. 50 sec). DT provides us with important but still insufficient time-related 

information. An identical DT can namely indicate different alarming situations, depending on the frequency at that particular 

instant fend. This is why the remaining frequency margin until the i-th forthcoming static UFLS threshold is needed as well: 

end TH,iDF f f= − . (12) 

 

It is possible to argue that dealing with DT and DF at the same time could be replaced by ROCOF. This is why we have to 

stress that by using ROCOF for prediction purposes, you would assume a future frequency decay of constant rate, whereas 

the described process takes into account the potential influence of all control mechanisms (e.g. governor action, impact of 

loads). This is an important contribution resulting in less tripping and an improved EPS frequency response.      

 

The information provided individually by DF and DT can be merged into a DF-DT plane, in which IED is able to monitor the 

severity of frequency conditions in real time. An example of the DF-DT plane in which the take-off characteristic is marked 

with a shaded area can be found in Fig. 8b and Fig. 8c. Fig. 8a depicts EPS frequency responses with two different power 

imbalances (larger imbalance – red line, smaller imbalance – blue line). 
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Fig. 8.  An illustrative example of the L-UFLS operation (a) and a corresponding take-off characteristic for a more (b) and 

less (c) severe case   

The conventional UFLS scheme used in this paper consists of six stages (10-10-10-10-10-5%) placed between 48.0 Hz and 

49.0 Hz (0.2 Hz apart). Therefore, the vertical range of the DF-DT plane is limited to 0.2 Hz. When it comes to the number 

of IED devices and their locations, we accepted the limitations from regulatory requirements of ENTSO-E [2], according to 

which the maximum amount of system loading covered by a single static (conventional) UFLS stage should be equal to 10% 

of the total EPS load (in each point in time). Therefore, since we have decided to split L-UFLS into three equally distributed 

dynamic sub-stages placed 0.2 Hz / 4 = 0.05 Hz apart, their sum corresponds to the size of the largest static UFLS stage 

(i.e. 10%). To avoid overlapping between the static UFLS and L-UFLS, we had to define a minimum DF value that was set 

to 0.02 Hz. Furthermore, depending on the DF value when L-UFLS is activated (step 4 in Fig. 1), all three L-UFLS sub-stages 

do not always fit between two subsequent static frequency thresholds. The minimum DF value required for activating all three 

sub-stages equals 0.15 Hz, therefore L-UFLS sub-stages are placed at fTH,i + [0.02, 0.07, 0.12] Hz in such cases. On the other 

hand, a DF value of at least 0.12 is needed for activation of two sub-stages (sub-stages placed at fTH,i + [0.02, 0.07] Hz). For 

a single sub-stage, the minimum DF equals 0.02 Hz (L-UFLS sub-stage at fTH,i + 0.02 Hz). Depending on how many L-UFLS 

sub-stages fit between two consecutive static thresholds, we are able to handle differently-serious situations. As a result, we 

need three different starting constraints (denotation j) in the take-off characteristic (denoted by k1 to k3, where index 1 

corresponds to all three sub-stages and index 3 to a single sub-stage). These constraints represent a constant DF/DT ratio and 

were set as k1 = 0.42, k2 = 0.26 and k3 = 0.15 in this paper, based on experience gained by running numerous dynamic 

simulations. The fourth and final constraint k4 = 0.06 in Fig. 8 represents conditions in which the frequency is expected to 

improve without UFLS.  

 

After the fault causing frequency excursion, the operating point in the DF-DT plane begins its path along the trajectory, 

starting with DF = 0.2 Hz. In case of a fast frequency decay (Fig. 8b), the initial trajectory is located on the left side of the 

shaded area and is directed towards the diagram origin. This occurs when we let the conventional UFLS to act and L-UFLS 
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hibernates. After each static threshold is reached, the trajectory suddenly shifts from the diagram origin back towards a value 

of DF = 0.2 Hz, but each time closer to the shaded area. Once the trajectory reaches the take-off characteristic (after four 

conventional UFLS stages), L-UFLS is initiated. In case of moderate frequency decay (Fig. 8c), a single conventional UFLS 

suffices before L-UFLS is activated. 

E.  Self-adjustment of L-UFLS settings 

In order to wait for frequency prediction after a power-imbalance incident occurs in the EPS, L-UFLS is initially set to 

hibernate below all the static UFLS thresholds. In this paper, the hibernation threshold was set to 47.5 Hz (see three red and 

blue rectangles at the bottom of Fig. 8a). As soon as the decreasing frequency trend is recognised by the machine-learning 

functionality and the take-off characteristic is violated (see the black dot in Fig. 8b and Fig. 8c), the L-UFLS automatically 

self-adjusts its thresholds. This is achievable in a very short period of time (in the range of IED-code execution rate), since 

there are no third-party elements involved, e.g. via the IEC 61850 protocol. Any modern IED offers enough hardware 

capabilities for this purpose. Depending on the DF value at that instant, one of the two possible adjustments is selected: 

1) full relocation: if DF ≥ 0.15 Hz (see Fig. 8c), all three sub-stages fit between two consecutive static UFLS (see a small 

power imbalance case in Fig. 8a and Fig. 8c, which sets the first out of three L-UFLS sub-stages to 48.95 Hz), 

2) partial relocation: if 0.02 Hz ≤ DF < 0.15 Hz, the first of three L-UFLS sub-stages is set to the value of the real-time 

frequency value since not all three sub-stages fit between the two consecutive static UFLS (i.e. 48.30 Hz in the case of 

large power imbalance in Fig. 8a and Fig. 8b). 

A very important aspect of L-UFLS is that each IED included in L-UFLS acts according to the locally measured frequency. 

Therefore, IED decisions and actions are not synchronised. This way, L-UFLS tripping is more time-dispersed, which results 

in a more continuous power re-balancing compared to any coordinated UFLS approaches. 

III.  Analytical model of the L-UFLS 

In this section, L-UFLS efficiency is evaluated analytically using the SFR model, similar to [19].  

A.  Multi-machine SFR model 

If one generalizes equation (4) in Section II.  B.      i)   to N generators, we obtain [19]: 

( )

( ) ( ) ( )

d R,i

1

m,j

R,i H,j R,j R,i
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2 1 1 1
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, (13) 

where the parameters have the same meaning as in (4). If a sudden imbalance between load and generation is represented as 

a step change ΔPd(s) = ΔPd/s, the dynamic load-frequency response after a contingency can be represented as follows [19]: 

1
i

d

1 i i

1 1
( )  

N

i

A
s P

p s s p


+

=

 
 =   − 

− 
 , (14) 

where Ai is either real or complex and pi is either a root or a pole of the denominator of (13). Thus, the time response of the 

N+1st order SFR model is: 

( )i

1
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d

1 i

( ) 1 ( )
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p t

i

A
t P e U t

p


+

=

 =   −  . (15) 

Equations (13)-(15) provide the analytical model of the free response of the system to the sudden imbalance contingency.  

B.  UFLS modelling 

To include UFLS in such SFR model, we need to develop its analytic model. UFLS is defined by the number of stages rS,max, 

the load shedding amount ΔPj, the corresponding stage threshold frequency fTH,j and time delay tdj, where index j = 1,… rS,max 

represents the individual load shedding stage. The total amount of load shedding PLS can be expressed as the sum of 

incremental step functions [19]: 

( ) jj
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M

s
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−

=


=    , (16) 

( )LS j j
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j

P t P U t 
=

=   − , (17) 

where τj is the moment of the j-th load shedding stage activation, M is the actual number of activated conventional load 

shedding stages and ΔP0 is the initial power imbalance between load and generation.  

C.  SFR-L-UFLS model 

If we want to include expression (16) in the multi-machine SFR model (14), we need to replace ΔPd in (14) by PLS, expressed 

by (16). As a result, the SFR-L-UFLS model can be written as: 

( ) j

1
j i

0 1 i i

1 1M N
s

j i

P A
s e

s p s s p




+
−

= =

  
 =    − 

− 
  . (18) 
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Compared to using the simulation model, the SFR-L-UFLS model can be used to analytically determine some basic indicators 

that define the system and UFLS performance [19]: 

1) the frequency-time response of the EPS 

( ) ( )( ) ( )i j
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i

j j

0 1 i
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M N

p t

j i
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−
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2) ROCOF 
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= −     −  , (20) 

3) steady-state frequency deviation 
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4) minimum transient frequency deviation 

( ) ( )i min j
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5) timing and number of load shedding stages 
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6) take-off characteristic 
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−
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These six performance indicators can be obtained by an iterative procedure, depicted in Fig. 9. The purpose of Fig. 9 process 

is to determine all the load shedding interventions and their effects on the frequency response. Since L-UFLS is intended to 

complement conventional UFLS, the process in Fig. 9 is divided into two parts (see green and orange shaded areas). First, we 

initialize the counters for the conventional (rS) and L-UFLS (rL) stages as well as fTH. After that, we observe the onset time 

tmin and the value fmin of the minimum frequency, assuming that no UFLS stage is activated (see (22) and (19)). If fmin is smaller 

than fTH, apparently fTH is about to be violated. Indication of DF/DT (see (24), where we assume that the frequency prediction 

error equals 0 and frated is the nominal frequency) being larger than k1 invokes the L-UFLS hibernation by increasing the 

counter rS and calculating the activation time of the first conventional UFLS stage τ'rS (23). This process is repeated until either 

all conventional stages are activated (rS = rS,max) or DF/DT is less than k1. This is the starting point of L-UFLS activation. 

When DF/DT is smaller than k1, the algorithm is forced to decide on L-UFLS relocations (either partial or full, depending on 

the situation, see Section II.  E.  ). For each L-UFLS activation (denotation L represents the actual number of activated L-UFLS 

sub-stages), the corresponding activation times τ'rL are determined, which initiates another iteration.  

D.  Performance comparison to conventional UFLS 

Using the SFR-L-UFLS model from Section III.  C.   and the algorithm shown in Fig. 9, we can analytically evaluate the 

effectiveness of L-UFLS. An example of such an evaluation is provided in Fig. 10, which shows a comparison of the frequency 

response (Fig. 10a) and total load shedding amount (Fig. 10b) of 6-stage conventional UFLS (grey line) and L-UFLS (black 

dashed line). For the purpose, we used a simple 2nd order SFR model (i.e. N = 1) by Anderson [28] with the following settings: 

ΔPd = -0.150 pu, H = 3.0 sec, R = 0.045, D = 0.1, TR,1 = 8.5 sec, Km,1 = 0.36 and FH,1 = 0.2. It can be seen that L-UFLS triggers 

three static stages (see red circles) and one dynamic sub-stage, since at the simulation time 2.7546 sec (see green dot) all 

conditions for a full L-UFLS relocation are fulfilled. Since the calculated minimum frequency considering the operation of 

the three static stages and one dynamic sub-stage (i.e. 48.4061 Hz) is larger than the frequency limit of the fourth static stage 

(i.e. 48.4000 Hz), the algorithm terminates. Thus, L-UFLS sheds 6.6% less load than conventional UFLS. 
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Fig. 9. Computational SFR-L-UFLS model 

 
Fig. 10. Frequency response and total load shedding amount calculated by SFR-L-UFLS model 

 

This analytical model is based on a simple SFR. For improved EPS modelling, a more complex SFR model could be used 

instead, describing a wider variety of power generation technologies. However, even by doing so, several aspects of the EPS 

dynamics would still be neglected, such as the limited spinning reserve, the inter-generator oscillations, the nonlinearities of 

the turbine-governor model, etc. This is why only by performing a series of off-line dynamic simulations (considering different 

power imbalances, different grid sizes and topologies, etc.) truly representative results about the UFLS efficiency can be 

obtained. Namely, ignored EPS dynamics in the analytical model indicates better L-UFLS performance than would be 

expected in reality. For this reason, it is reasonable to provide the test results in terms of RMS dynamic simulations in Section 

IV.    

IV.  Case studies 

To test the proposed algorithm, we applied it to two EPS models of different scales, both validated against PMU recordings 

of past events [42]. First, we investigated how L-UFLS improves the frequency stabilization process in a small-size network 

(section IV.  A.  ), which often attracts attention, as it experiences a transition into island operation several times a year. The L-

UFLS scheme was implemented with two IEDs placed in different substations. Since three L-UFLS sub-stages are considered, 

each sub-stage covers 3.3% of the consumers. The PCA database has been built from 1000 dynamic simulations and frequency 
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recordings, which differ in terms of power mismatch, power plant types, topology and controllers. To recognise frequency-

related events and calculate the T2 statistics, 500 msec and 3000 msec sliding windows were implemented. The PCA similarity 

was evaluated based on the k-nearest neighbour classification algorithm and the Euclidean distance metric. For frequency 

estimation, we used the SFR model from Section II.  B.      iv)  . 

 

Second, we analysed L-UFLS impact on a large-scale network, i.e., a dynamic model of the entire Slovenian EPS (section IV.  

B.  ), the description of which can be found in [42]. Due to the size, the different voltage levels (110 kV, 220 kV and 400 kV), 

the variety of power plant types, the presence of a phase-shifting transformer, a STATCOM device and several other static 

compensation devices, we consider that it fulfils the criteria of a large-scale realistic EPS. The L-UFLS scheme was 

implemented by means of 15 IEDs evenly dispersed around the network. All other settings (PCA database, sliding window 

size, metric distance), conventional UFLS setting and the number of L-UFLS sub-stages remain the same to a small-size 

network. 

 

To confirm the approach viability, it is appropriate to provide the time requirement for execution of processes that are supposed 

to run in the IED in real time. Using our laboratory PC with Intel® Core™ i7-7700 CPU, 3.60 GHz, 16 GB RAM, the entire 

IED processes required less than 20 msec (prediction 10 msec, data preparation, PCA transformation, distance computation 

and k-smallest distance determination up to 7 msec, estimation of the take-off characteristic 0.3 msec). It should also be 

emphasised that there still must be many opportunities for code optimization. 

A.  L-UFLS efficiency in a small-size network 

We evaluated the L-UFLS efficiency in the range from 1 up to 80 MW power deficit in 1 MW increment. Fig. 11 shows the 

percentage of EPS de-loading by applying conventional (empty grey dots) and presented (full black dots) UFLS. The 

improvement is indicated by a grey-shaded area, which means that L-UFLS intervened in 42% of all cases. With L-UFLS, 

interrupted load is more linearly dependent on power deficit and is always less or equal than the conventional UFLS. The 

maximum reduction of 6.43% occurs at power deficit of 47 MW. Since regulations [2] prohibit UFLS intervention before the 

frequency exceeds 49.0 Hz, the L-UFLS stage is set to not modify the first stage.  

 

A negative by-product of interrupting too much load is the resulting frequency overshoot. The upper set of circles and dots in 

Fig. 12 shows these overshoots for all simulated cases. In the majority of cases, L-UFLS successfully eliminates the overshoot. 

On the other hand, the frequency nadir (the lower set of circles and dots in Fig. 12) is slightly lower. 

 

Since the main task of UFLS protection is to stabilize the frequency and bring the ROCOF value as close to zero as possible 

[1, 4], Fig. 13 also shows the ROCOF value after the last UFLS intervention. It can be seen that L-UFLS significantly reduces 

this value, keeping it slightly below zero in order to leave the frequency control to handle the rest. 
 

 
Fig. 11. Total load shedding amount of the conventional UFLS and L-UFLS (small-size network) 

 
Fig. 12. Maximum and minimum frequency during the frequency transient (small-size network) 
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Fig. 13. ROCOF after the last UFLS intervention (small-size network) 

B.  L-UFLS efficiency in a large-size network 

The L-UFLS efficiency was evaluated over a wide range of active-power deficit values, ranging from 1 MW to 1400 MW 

with an increment of 20 MW. Similar to Fig. 11, Fig. 14 shows the percentage of EPS de-loading when the conventional 

(blank grey dots) and proposed (black dots) UFLS are applied, with the improvement due to L-UFLS indicated by a grey-

shaded area. However, compared to Fig. 11, Fig. 14 shows additional cases where L-UFLS is able to shed more load than the 

conventional UFLS, indicated by a yellow-shaded area. Once more, L-UFLS causes the amount of interrupted load to come 

closer to a linear relationship and is always less than or equal to the load interruption of the conventional UFLS (the maximum 

reduction is 5.27% for a 500 MW deficit case). A few exceptions can be seen in the yellow-shaded area on the right side, 

where a conventional UFLS fully exhausts a load reduction of 55%, while L-UFLS is able to stabilize more cases as it 

contributes 10% to the total load reduction (UFLS controls 65% instead of 55% of the system load). A comparison of Fig. 11 

and Fig. 14 also reveals that the improvement by L-UFLS is more significant in a small-size network due to lower inertia.   

 

Fig. 15 shows the corresponding maximum (overshoot) and minimum (nadir) frequencies reached during a transient in each 

simulated case. It can be noticed that there are no significant overshoots in the large-size network, regardless of the UFLS 

philosophy. The reason for this is the larger inertia value compared to a small-size network, which limits fast frequency 

changes.  
 

 
Fig. 14. Total load shedding amount of the conventional UFLS and L-UFLS (large-size network) 

 

 
Fig. 15. Maximum and minimum frequency during the frequency transient (large-size network) 

 

Similarly, to the case of a small-size network, Fig. 16 shows the ROCOF value a moment after the last UFLS intervention. 

Again, L-UFLS reduces this value well towards zero, giving the frequency control time to regulate the frequency. 

 

In the final stage of the analysis, we tested how IED distribution and IED count in the system influences the efficiency of the 

scheme. For this purpose, we tested three different IED distributions: i) minimum number of IEDs located in the very vicinity 

of a single substation (distribution 1), ii) maximum number of IEDs evenly dispersed across the entire system (distribution 3) 

and iii) hybrid distribution between i and ii (distribution 2). The results in Fig. 17 indicate that frequency responses in all three 

scenarios are identical. The IED distribution matters only when we take into account the possibility of islanding certain 

0 10 20 30 40 50 60 70 80
-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

Active power deficit [MW]
R

O
C

O
F

 a
ft

er
 t
h

e 
la

st
 U

F
L

S
 

in
te

rv
en

ti
o

n
 [

H
z/

s]

achieved improvement

conventional UFLS
L-UFLS

0 200 400 600 800 1000 1200 1400
0

10

20

30

40

50

60

70

Active power deficit [MW]

L
o

ad
 s

h
ed

 [
%

]

achieved improvement

conventional UFLS
L-UFLS

loads remain supplied

activation at 47.5 Hz

0 200 400 600 800 1000 1200 1400
47.5

48.0

48.5

49.0

49.5

50.0

50.5

Active power deficit [MW]

F
re

q
u

en
cy

 [
H

z]

MAX frequency value

achieved improvement

conventional UFLS
L-UFLS



 15 

portions of the studied EPS. In this case, it makes sense to distribute the IEDs as evenly as possible throughout the EPS (a 

single IED for each substation). 
 

 
Fig. 16. ROCOF after the last UFLS intervention (large-size network) 

 

 
Fig. 17. Negligible impact of IED distribution in the system 

C.  Impact of the number of UFLS stages 

In general, the number of L-UFLS sub-stages depends on the desired fine-tuning of the power imbalance. However, real IED 

devices need some time to respond to a trigger signal, so more sub-stages do not necessarily mean better performance, as the 

UFLS stages may overlap. This is why we do not recommend a large number of L-UFLS sub-stages. To show that three L-

UFLS sub-stages are sufficient, we compare the L-UFLS with the 4-stage (UFLS4), 6-stage (UFLS6), 10-stage (UFLS10) and 

50-stage (UFLS50) conventional UFLS. The static stages are evenly distributed between 48.0 Hz and 49.0 Hz. Among the 

listed conventional UFLS, the UFLS50 achieves the most accurate active-power balance, so we use it as a reference for 

evaluating other UFLS schemes. Fig. 18 shows the deviation from the load shed amount of UFLS50 as a function of the active 

power deficit. Therefore, a positive/negative value means a higher/lower amount of interrupted customers. As expected, 

UFLS4 disconnects the largest amount of loads in most cases (i.e. 48.15% of all cases). Since UFLS4, UFLS6 and L-UFLS 

have the same first stage (10% at 49.0 Hz), the amount of disconnected load is the same for power deficits in the range from 

0 to 20 MW. L-UFLS disconnects less load in 37.03% and UFLS10 in 27.16% of the cases compared to UFLS50.  

 

We are interested in the L-UFLS efficiency when the dynamic stage is activated. Fig. 19 shows the boxplot diagram of 

maximum frequency and ROCOF after the last UFLS intervention for power deficits greater than 20 MW. It can be seen that 

the greater the number of static stages is, the smaller the maximum frequency and ROCOF are. The results show that L-UFLS 

efficiency can be classified between UFLS10 and UFLS50. We can therefore conclude that a L-UFLS with three sub-stages 

alongside a six-stage conventional UFLS corresponds to the results delivered by the conventional UFLS scheme with dozens 

of stages. 
 

 
Fig. 18.  Deviation from 50-stage UFLS total load shedding amount 

 

0 200 400 600 800 1000 1200 1400
-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

achieved improvement

conventional UFLS
L-UFLS

Active power deficit [MW]

R
O

C
O

F
 a

ft
er

 t
h
e 

la
st

 U
F

L
S

 

in
te

rv
en

ti
o
n
 [

H
z/

s]

0 200 400 600 800 1000 1200 1400
47.5

48.0

48.5

49.0

49.5

50.0

50.5

IED distribution 3

IED distribution 1
IED distribution 2

Active power deficit [MW]

F
re

q
u
en

cy
 [

H
z]

MAX frequency value

0 10 20 30 40 50 60 70 80
-6

-4

-2

0

2

4

6

8

Active power deficit [MW]

D
ev

ia
ti

o
n

 f
ro

m
 U

F
L

S
5
0
 l

o
ad

 

sh
ed

d
in

g
 r

es
u
lt

s 
[%

]

UFLS4

UFLS6

UFLS10

L-UFLS

consequence 
of considering 
regulations [2]



 16 

 
Fig. 19.  Boxplot diagram of maximum frequency during the frequency transient and ROCOF after the last UFLS 

intervention 

D.  Comparison to another advanced solution following similar targets 

The process of dynamic shifting of L-UFLS appears as if one would be dealing with a large number of conventional UFLS 

stages. A comparison to those is presented in Section IV.  C.   However, it is reasonable to compare L-UFLS efficiency with an 

advanced method that follows a similar (but unfortunately not equal) philosophy and targets as L-UFLS. For this purpose, we 

selected [43], which we dub M-UFLS. The notation originates from the core idea of defining frequency-stability margin 

variable M(t). Before we compare the results, an important difference between both methods should be stressed. L-UFLS is 

subject to an intentionally imposed limitation that prevents it to modify conventional UFLS settings (in [43], conventional 

UFLS is subject to modification). We designed L-UFLS to operate alongside conventional UFLS in order to simplify its 

implementation and make it more cost-effective [43]. 

 

Fig. 20 and Fig. 21 depict the total load shedding amounts (Fig. 20) and minimal/maximal frequency values recorded during 

the transient (Fig. 21) for the same 80 MW active-power deficit values as in section IV.  A.  . We can observe that M-UFLS is 

able to achieve frequency stabilization with less disconnected load, but at the same time, it allows the frequency to temporary 

drop lower during the transient. This is not something we decided to allow in our solution. Instead, our intention was to fully 

stabilize the frequency with L-UFLS and not share this burden with frequency control. This is why L-UFLS 

decreases ROCOF after the last intervention much closer to zero than M-UFLS. Therefore, the comparison results highlight 

the fact that even the smallest and seemingly less important limitations can cause noticeable changes in UFLS efficiency. 

Since L-UFLS and M-UFLS do not have the exact same goals, results are appropriately different. Nevertheless, the 

philosophies of L-UFLS and M-UFLS are still extremely similar, much more similar than other solutions from the available 

literature. It should also be kept in mind that as a result, L-UFLS is associated with significantly lower implementation costs 

compared to M-UFLS, since it does not assume any intervention into existing conventional UFLS. Despite this, we can 

estimate that both solutions are well below the implementation cost of other complex solutions available in the existing 

literature (e.g. WAMS-based). 
 

 
Fig. 20.  Performance comparison of conventional L-UFLS and M-UFLS (total load shedding) 
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Fig. 21.  Performance comparison of conventional L-UFLS and M-UFLS (minimum and maximum frequency values) 

E.  Operation under cascade tripping conditions 

L-UFLS is predicted to actively participate in load shedding whenever certain conditions are met (i.e. frequency drop, ROCOF 

is low enough and loads are still available for shedding), regardless of the pre-existing situation. To show that system benefits 

from this under cascade-tripping conditions, the reader is asked to study Fig. 22. In Fig. 22 the EPS frequency response is 

depicted after two subsequent power imbalances (the first at t = 1 sec due to islanding and the second at t = 10 sec resulting 

from a generation unit trip). The black curve is showing the results corresponding to L-UFLS and the grey curve considers a 

conventional standalone 6-stage UFLS.  

 

Initial power imbalance after islanding equals 74 MW. In order to solve this power imbalance, conventional UFLS trips four 

stages (in total 40% load decrease). On the other hand, L-UFLS allows only three conventional stages to be activated. Before 

the frequency reaches the threshold of the fourth stage, a single L-UFLS dynamic stage is activated that is sufficient to stop 

the frequency decay (in total 33.3% load decrease). It is obvious that after the frequency starts to recover, conventional UFLS 

causes significant overshoot, which is not the case with L-UFLS. 

 

After the second imbalance at t = 10 sec, frequency starts to decrease again. Frequency thresholds of the remaining unused 

conventional UFLS are located at 48.2 Hz and 48.1 Hz, but they were not activated since the primary frequency control was 

able to stabilize the frequency by itself. On the other hand, L-UFLS has again recognized favourable conditions before the 

frequency reached the 4th static stage. This added 5% to system de-loading, which resulted in smooth frequency stabilization.  
 

 
Fig. 22.  Efficient operation under cascade tripping conditions  

F.  Operation uncertainties in power generation 

The existing EPS trends and forecasts indicate a sharp decline in conventional generation on one hand and an increase in 

inverter-based generation (several of them intermittent in nature due to dependency on weather conditions) on the other. There 

are two resulting consequences: i) rotational kinetic energy, inherently a part of synchronous generators (overall EPS inertia) 

in operation, is expected to decrease and ii) inertia of the EPS will vary due to the intermittency of renewable energy sources. 

 

We addressed both issues in the L-UFLS design process by assuring continuous frequency monitoring, splitting L-UFLS into 

several stages (three in this paper), using a frequency signal as an input rather than ROCOF and running the SFR fitting 

process on a wide sliding window, which neutralizes all random factors, such as noise and generation intermittency. For this 

purpose, we used a large-scale network from Section IV.  B.   to obtain three sets of simulations, with each set having different 

overall inertia in the system (0.5H, H, and 2H, where H is the actual inertia value of the Slovenian power system). Results are 

presented in Fig. 23 as a deviation from the conventional UFLS operation. The left plots show the difference between the total 

disconnection amount and the right plots show the difference in the maximum achieved frequency during the transient. We 

see that L-UFLS disconnects a smaller (up to about 5%) amount of load than conventional UFLS, regardless of the magnitude 

of inertia. When L-UFLS is used, the maximum frequencies are understandably lower at higher H, since by their nature, 

high-inertia networks are less vulnerable to frequency oscillations. On the other hand, similar results can be observed when 

inertia is halved. This confirms that the L-UFLS setting and its operation is independent of the uncertainties in power 

generation.  

V.  Conclusion 

This paper proposes an improvement to the conventional UFLS scheme. The proposed solution retains the existing UFLS 

relay settings (tripping thresholds) and introduces an additional dynamic UFLS stage by means of a small and specialized 

group of IEDs equipped with machine-learning functionality. The libero UFLS is divided into a few sub-stages, the triggering 

criteria for which are automatically set. Pattern-recognition mechanism of the IEDs provides the awareness for the need to 

fine-tune the power-imbalance. This approach maintains the speed and robustness of conventional UFLS and provides the 
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desired flexibility at the same time. Research shows that the libero UFLS with three self-adjusting sub-stages is equivalent to 

the conventional UFLS with dozens of fixed stages. Compared to other existing advanced methods, its implementation in EPS 

is less intrusive and does not require wide-area communication. In fact, unsynchronised IED operation has several beneficial 

effects. 
 

 
Fig. 23.  Analysis of inertia impact on L-UFLS performance 
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