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Abstract—Machine learning (ML) has been used to develop in-
creasingly accurate link quality estimators for wireless networks.
However, more in depth questions regarding the most suitable
class of models, most suitable metrics and model performance
on imbalanced datasets remain open. In this paper, we propose a
new tree based link quality classifier that meets high performance
and fairly classifies the minority class and, at the same time,
incurs low training cost. We compare the tree based model,
to a multilayer perceptron non-linear model and two linear
models, namely logistic regression and support vector machine,
on a selected imbalanced dataset and evaluate their results using
five different performance metrics. Our study shows that 1)
non-linear models perform slightly better than linear models
in general, 2) the proposed non linear tree-based model yields
the best performance trade-off considering F1, training time
and fairness, 3) single metric aggregated evaluations based only
on accuracy can hide poor, unfair performance especially on
minority classes, and 4) it is possible to improve the performance
on minority classes, by over 40% through feature selection and
by over 20% through resampling, therefore leading to fairer
classification results.

Index Terms—link quality estimation, machine learning, un-
balanced data, fair classification, data-driven optimization, data
preprocessing, feature selection.

I. INTRODUCTION

Machine learning (ML) is becoming an increasingly pop-
ular way of solving various problems in communications in
general and wireless networks in particular. Data driven link
quality estimation (LQE) techniques where the researchers
manually developed models have been proposed over the
last two decades [1]–[3]. More recently, the manual model
development is being automated, by using machine learning
algorithms that approximate the distribution of the underlying
random variable and are thus able to learn the quality of a
link [4], [5].

LQE models developed using ML algorithms can estimate
the quality of a link in a continuous-valued space by means of
performing regression [4], [6]–[9]. Alternatively, if they esti-
mate the link quality in a discrete-valued space, ML performs
classification [5], [10]–[12]. By analyzing the existing body of
literature developing classification models for LQE, we notice
two types of approaches; i) binary- or two-class, ii) multi-
class.

The binary- or two-class approach, can be found in [10],
[11], [13] while multi-class approach appears in [5], [12],

[14]–[16], where [14], [16] use a three-class, [17] utilizes a
four-class, [12], [15] rely on a five-class, and [5] leverages
a seven-class output. These applications are leveraged for the
categorization and estimation of the future link state, which
is expressed through labels/classes and it is not always clear
from the related work how the authors select the number of
classes. The binary-class works seem to be motivated by the
application requirements, particularly of a multi-hop routing
protocol that needs to know whether a link is reliable or
not. The three-class approach seems to be motivated by the
non-linear S-shaped curve with three regions specified for
wireless links [18]. The seven-class output is motivated by the
geographical environment over which the wireless network op-
erates considering the application of coverage estimation [5].

An important aspect that is not previously considered in
LQE classification and possibly neither in general classifica-
tion problems for wireless communications is the fairness of
the ML models developed for classification. However, main-
taining fairness in multi-class classification problems has been
a challenging issue, especially when an imbalanced dataset is
considered [19]. To exemplify the significance of classification
unfairness in real-life scenarios, Chouldechova et al. [20] show
evidence of racial bias in the recidivism prediction tool, in
which white defendants are less likely to be classified as high-
risk than black defendants and Obermeyer et al. [21] show
biases in the health care decision-making system in which
black patients who are captured by the algorithm at the same
risk level are sicker than white patients. Resembling these
real-life classification problems to the wireless communication
links, when no good links are available and the classifier
is unable to recognize intermediate links as these usually
belong to the minority class that is unfairly discriminated, the
communication might be hindered by selecting a bad link.
Therefore, it is important to justify whether the decision made
by a ML model is fair to all considered link quality classes.
Against this background, we propose a decision tree-based ML
model for LQE with the goal of attaining fairness between
link quality classes, albeit with the least possible accuracy
compromise, and compare this accuracy/fairness performance
trade-off to other existing ML models.

From the analysis of the literature discussed above, we draw
the following observations:



Observation-1: ML based classification studies that use
linear ML methods, such as logistic regression (LR) alongside
non-linear methods, such as neural networks [6], [10] reveal
small performance differences in the range of few percentage
points on the three zone S-like shaped link quality curve.
According to [4], link quality tends to be a non-linear function,
thus non-linear models are likely to perform better for LQE.
However, this aspect is not systematically investigated in the
literature.

Observation-2: Most of the related works on classifica-
tion evaluate their performance using the accuracy metric
and perhaps some other application-specific metric, such as
routing tree stability or depth. Notable exceptions are [5], [12],
where the authors present a full confusion matrix to be able
to assess which classes are well discriminated by the model
and which are often confused. However, it is well-known in
the ML communities that accuracy is a misleading metric,
especially for imbalanced datasets [22], where it can hide bias
or unfairness towards the minority class [19].

Observation-3: The authors of [12] provide a great level
of details in their methodology and in their results. Their
confusion matrices reveal very strong performance on certain
classes and higher confusion on others. Relatively poorer
performance on intermediate classes may be due to the class
imbalance on the training data. However, we are unable to see
if this is the case with their training data and by looking at
their process, no countermeasures, e.g. resampling techniques
seem to be adopted as a remedy.

Following the three listed observations, we identify oppor-
tunities to contribute and extend the existing body of work on
LQE using ML based classification, as follows.
• We propose a new tree based link quality classifier that

meets high classification performance and fairly classifies
also the minority class while, at the same time, incurring
low training cost.

• We compare the proposed tree based model, to a multi-
layer perceptron (MLP) non-linear model and two linear
models, namely LR and support vector machine (SVM),
on a selected imbalanced dataset and show that the
proposed model takes about 90 times less training time
compared to MLP and the performance compromise is
less than ≈ 1%.

• We adopt standard metrics from the ML community to
evaluate the performance of our classifier. In addition
to accuracy, we also use precision, recall, F1 and,
where necessary, the detailed confusion matrix based
on which all the other metrics are computed. To date, no
other LQE classification work considered all five different
metrics for a thorough performance evaluation that also
considers per class fairness.

• We explicitly study and evaluate ways to improve minor-
ity class discrimination on imbalanced datasets for the
sake of a fair classification performance on all link quality
classes. For this purpose, we select a publicly available
wireless dataset that is suitable for developing an LQE
classifier and is imbalanced.

The rest of this paper is structured as follows. Section II
summarizes related work while Section III defines the learning
problem, including a preliminary for linear and non-linear
ML-based models, dataset selection and methodology. Sec-
tion IV elaborates on selecting the best features for training a
model with high performance and fair per-class discrimination
capabilities. Section V studies how to compensate for the
class imbalance in the dataset to further improve per class
fairness while Section VI evaluates the performance of the
proposed model. Finally, in Section VII summarizes the paper
and identifies future directions.

II. RELATED WORK

To the extent of our knowledge, this is the first attempt to
develop a ML-based LQE model that considers classification
fairness among the accounted wireless link quality classes.
Moreover, there is only a paucity of contributions considering
decision tree-based ML algorithms for LQE.

One of the first ML models for LQE is proposed by Liu et
al. [6], in which they use the 4C algorithm to train three ML
models based on naı̈ve Bayes, neural networks, and logistic
regression algorithms, which ultimately produces a multi-class
output. Subsequently, Liu et al. [10] extend their work to an
online ML model, namely TALENT, where the model built
on each device adapts to newly generated data points instead
of being pre-computed on a server, and consequently yields a
binary threshold-based output.

Similarly, Shu et al. [15] use the SVM algorithm to develop
a five-class link quality model, while Okamoto et al. [8]
use an online learning algorithm called adaptive regularisa-
tion of weight vectors for learning to estimate throughput
from images, and then Bote-Lorenzo et al. [9] train online
perceptrons, online regression trees, fast incremental model
trees, and adaptive model rules. The latter two models con-
sider continues-valued output, which means that they are
simply constrained by numerical precision due to regression.
Demetri et al. [5] propose a seven-class SVM classifier to
estimate LoRa network coverage, using multiple input metrics
to train the classifier, including multispectral aerial imagery.
Surprisingly, the only reinforcement learning-based approach
for LQE is found in [7], where the authors train a greedy
algorithm with multiple input metrics to estimate packet
reception ratio (PRR) as a continuous-valued output in terms
of protocol improvement in mobility scenarios.

Furthermore, two LQE models using deep learning algo-
rithms have been proposed, where the first model [4] intro-
duces a new LQE metric for estimating link quality in smart
grid environments that relies on signal-to-noise ratio (SNR)
while producing a continuous-valued PRR output. In the other
model, Luo et al. [12] incorporate multiple input metrics and
train neural networks to discriminate an LQE model with five
classes.

None of the aforementioned works dealing with multi-class
classification problems consider fairness among accounted
classes and decision tree-based ML algorithms. Only in our
recent work [23], we evaluate the performance of logistic



regression, three-based, ensemble, and multilayer perceptron
algorithms for LQE with a three-class output and show that
feature engineering has a larger impact on the final LQE model
performance than the choice of ML algorithms. However, the
fairness among the considered classes was not analysed in this
particular work.

III. DEFINITION OF THE LEARNING PROBLEM

We aim to learn to discriminate among the widely-used
three-class distinction model [18], i.e., good, intermediate and
bad classes for a link. To achieve this, we leverage the selected
dataset and the identified linear and non-linear ML algorithms,
and train the algorithms with a subset of the available data.
This way, a model that is able to discriminate among the
three target classes is developed and its performance is then
evaluated on the remaining data. To conduct our study and
evaluate the performance of the proposed DTree and the other
three models, we use the standard approach for developing a
classifier: we first perform data pre-processing, then continue
with model training and selection.

A. Linear and non-linear ML-based models

Machine learning algorithms are suitable for automatically
approximating the underlying distribution that generated a set
of measurements. They are particularly useful when there is no
analytical formula that models the phenomenon generating the
distribution and a large number of empirical observations can
be collected. If the measurements are closer to a non-linear
function, than non-linear ML algorithms such as decision
trees are more suitable for approximating them. Otherwise,
linear models such as logistic regression (LR) are preferred
due to their simplicity and relatively lower computational
complexity [24].

For linear ML-based LQE model development, we consider
logistic regression as a subset of the general linear regression
and support vector machine (SVM) with linear kernel. A
logistic regression function enforces the output of the linear
function to lie between the value of 0 and 1, where the
classification (labeling) of link quality is conducted based on a
predetermined threshold. This can be achieved by maximizing
the probability of a random data point to be correctly classified
relying on maximum likelihood, gradient descent or other
optimization algorithms. Similarly, SVM with linear kernel
produces a hyperplane or a line (depending on the number of
features) that precisely classifies data points. The main idea of
the SVM is to maximize the margin between respective data
points that are closer to the hyperplane [24].

On the other hand, the considered non-linear ML-based
LQE models are developed using decision trees (DTree) and
multilayer perceptron (MLP). A decision tree represents a non-
linear mapping of the independent and dependent variables,
which can be utilized for classifying data that is difficult to
separate with linear methods [24]. MLP represent a subset of
feedforward artificial neural networks composed of at least
three layers of nodes, each of which is a neuron that utilizes

a non-linear activation function. MLP can classify data that is
not linearly distinguishable [24].

Fig. 1: PRR and average RSSI relationship for Rutgers trace-set (log-scale).

B. Trace-set selection

As discussed in Section I, the third aspect of our inves-
tigation requires an imbalanced dataset that is suitable for
training a ML based LQE. We also prefer a publicly available
dataset so that the research can be easily replicated. We have
identified a number of such publicly available datasets, namely
Roofnet [25], Rutgers [26], “packet-metadata” [27], University
of Michigan [28], EVARILOS [29] and Colorado [30].

Roofnet [25] is a well known WiFi-based trace-set and
contains the largest number of data points among the identified
trace-sets, however PRR, as a target training metric for the
classifier, can only be computed as an aggregate value per
link without the knowledge of how the link quality varied
over time. Rutgers is smaller than Roofnet, however is large
enough to train a ML model and is appropriately formed for
our purpose. The trace-set for each node contains raw received
signal strength indicator (RSSI) value along with the sequence
number.

Upon closer investigation for the remaining trace-sets, we
concluded that they are not suitable for our intended purpose.
The “packet-metadata” [27] comes with a plethora of features
convenient for LQE research. In addition to the typical LQI
and RSSI, it provides information about the noise floor, trans-
mission power, dissipated energy as well as several network
stacks and buffer related parameters. However, packet loss can
only be observed in rare cases with very small packet queue
length.

The trace-set from the University of Michigan [28] is some-
what incomplete and suffers from an inconsistent data format
containing lack of units, missing sequence numbers and in-
adequate documentation. The two EVARILOS trace-sets [29]
are mainly well-formatted, whereas each contains fewer than
2,000 entries. In the Colorado trace-setColorado [30], the



TABLE I: Global parameters for ML-based LQE models.

Step/Parameter Default value

Missing data Domain knowledge (zero-fill)
History window size (Whistory) 10
Prediction window size (WPRR) 10
Features set RSSI, RSSI10, RSSISD,10
Resampling strategy Random oversampling (ROS)
Link quality labels Good, intermediate, bad

Globally used ML algorithms

Linear: Linear (Logistic)
Non-linear: Decision trees (DTree)

with tree depth limited to 4,
the min. samples per node set to 50

Cross-validation strategy Randomize & 10-times Stratified K-Fold

diversity of the link performance is missing as all links seem
to exhibit less than 1% packet loss.

After careful consideration we selected the “Rutgers trace-
set” [26] as the candidate dataset for this work. The dataset was
created using the ORBIT testbed and includes 4,060 distinct
link traces, which are gleaned from 812 unique links with 5
different noise levels, i.e., 0, -5, -10, -15 and -20 dBm. Read-
ily available trace-set features include raw RSSI, sequence
numbers, source node ID, destination node ID and artificial
noise levels. The packets are sent every 100 milliseconds for
a period of 30 seconds, therefore, each trace is composed of
300 packets. Besides, based on the specifications of the radio
used, each RSSI value is defined between 0 and 128, where
the value of 128 indicates an error and is therefore invalid. A
statistical analysis of the Rutgers trace-set reveals that 960 link
traces out of 4,060 (23.65%) are entirely empty indicating no
packets were received, and that a total of 1,218,000 packets
were sent and only 773,568 (63.51%) were correctly received.

We plot in Fig. 1 the relationship between RSSI and the
PRR computed based on the available sequence numbers. The
darker hexagonal areas of Fig. 1 indicate that the majority
of links are of either “poor quality” (bottom-left) or “good
quality” (top), while gray areas are of “intermediate quality”.
The bars on the right hand side of the figure show the
imbalanced nature of the dataset, more precisely, 61% of the
links are good, 34% are bad and only 5% intermediate.

C. Experimental details

As a baseline reference model, we select the majority
classifier, which in our case, classifies all the links in good
quality class. In order to evaluate the most suitable ML-based
LQE model, we utilize accuracy, precision, recall and F1
metrics. For our analysis, we include per class score values
in parentheses for precision, recall and F1 values as in the
following order: good, intermediate and bad. Then, these
values in parenthesis are averaged using a weighted average
value per class method to obtain precision, recall and F1
values, respectively. For the sake of providing a fair com-
parison, before any ML-based LQE model is developed, the
dataset is shuffled and 10-times stratified K-Fold is employed
to produce estimated classes [31]. For the development of
ML-based LQE models, we utilize the global parameters of

Table I throughout the paper, unless stated otherwise. Whistory
in Table I represents the historical window that is utilized
for calculating the features and WPRR depicts the prediction
window that is used for identifying the link quality labels.
RSSI10 represents the averaged RSSI over 10 packets and
RSSISD,10 represents the standard deviation of the RSSI over
10 packets. Missing values in the Rutgers are filled using the
zero-filling technique, as outlined in Table I.

IV. THE INFLUENCE OF FEATURE SELECTION ON
PERFORMANCE AND FAIRNESS

Feature selection is the step in data preprocessing concerned
with determining unprocessed features or creating synthetic
features for the training of ML algorithms. Features can be
conducted manually or produced by the aid of algorithms. The
training feature available in our dataset is the raw RSSI value
and the other is the sequence number that can be exploited
for the limited time series analysis, and computation of PRR,
on which the link quality classes depend. The arbitrary values
associated to distinct classes, which were also set in [18], are
defined in the form of the following rule:

y = f(PRR) =


bad, if PRR ≤ 0.1

intermediate, otherwise
good, if PRR ≥ 0.9,

(1)

y = [y1, y2, . . . , yn], ∀y ∈ {bad, intermediate, good}. (2)

One of the widely-used approaches in ML for such trace-
sets with small number of features is to examine whether
synthetic features, such as average RSSI over a time window
period or polynomial interactions [32], can assist the training
to obtain more accurate models compared to that of the raw
RSSI values. We study an extensive combination of features
including 1) readily available RSSI, 2) averaged RSSI over 10
packets RSSI10, 3) standard deviation of RSSI over 10 packets
RSSISD,10, 4) a combination of the three RSSI, RSSI10,
RSSISD,10, derivate RSSI ∆RSSI (“left” derivative), and nega-
tive power of the averaged RSSI RSSI

{−4,−3,−2,−1,1,2,3,4}
10 that

are listed in Table II and present the influence of the best-
performing set of feature combinations on the classification
performance. The table evaluates how well the learned model
predicts link quality as per Eq. (1) for the next prediction
window WPRR, while relying on the parameters of Table I.

The results show that only using RSSI yields 74% accuracy
for the linear model and 75% for the non-linear one as per
the first line corresponding to each algorithm in Table II.
The F1 scores are 70% and 72% respectively, confirming the
fact that accuracy overestimates the performance of the model
on imbalanced datasets [22]. Breaking down into per class
performance, it can be seen that F1 on the majority good class
is 70% with a precision of 86% and recall of only 93% as
also visually represented in Figures 2a and 2b. High precision
and recall on this class show that the model is able to find
the largest part of good links with minimal confusion. On the
other hand, on the minority intermediate class, the F1 is as



TABLE II: Comparison of various sets of features using linear and non-linear ML algorithms.

Algorithm Feature set Acc. [%] Precision [%] Recall [%] F1 [%]

Linear (Logistic)

RSSI 74.4 77.3 (86.3, 81.4, 64.3) 74.4 (92.8, 30.9, 99.3) 70.8 (89.5, 44.8, 78.1)

RSSI10 89.7 89.8 (92.6, 90.0, 86.9) 89.7 (93.8, 77.8, 97.5) 89.5 (93.2, 83.5, 91.9)

RSSISD,10 77.1 78.4 (82.8, 64.3, 88.1) 77.1 (55.6, 79.3, 96.6) 76.6 (66.5, 71.0, 92.1)

RSSI, RSSI10, RSSISD,10 92.2 92.3 (97.1, 90.2, 89.6) 92.2 (93.9, 86.0, 96.7) 92.2 (95.5, 88.0, 93.0)

∆RSSI (“left” derivative) 43.7 31.3 (52.4, 0.0, 41.5) 43.7 (31.6, 0.0, 99.4) 32.7 (39.4, 0.0, 58.5)

RSSI{−4,−3,−2,−1,1,2,3,4}
10 80.0 80.0 (93.5, 72.0, 74.4) 80.0 (92.3, 65.4, 82.3) 79.9 (92.9, 68.6, 78.1)

Non-linear (DTree)

RSSI 75.1 77.5 (92.2, 75.8, 64.3) 75.1 (87.8, 38.2, 99.3) 72.9 (90.0, 50.8, 78.1)

RSSI10 91.6 91.6 (94.5, 87.4, 93.1) 91.6 (91.7, 87.5, 87.4) 91.6 (93.1, 57.4, 94.3)

RSSISD,10 80.8 80.7 (78.3, 71.3, 92.6) 80.8 (72.7, 74.1, 95.6) 80.7 (75.4, 72.7, 94.1)

RSSI, RSSI10, RSSISD,10 93.2 93.2 (96.2, 90.4, 93.0) 93.2 (94.8, 89.0, 95.6) 93.2 (95.5, 89.7, 94.3)

∆RSSI (“left” derivative) 60.3 63.5 (69.6, 65.7, 55.2) 60.3 (44.7, 37.4, 98.8) 57.6 (54.4, 47.7, 70.8)

RSSI{−4,−3,−2,−1,1,2,3,4}
10 80.0 79.9 (93.0, 72.3, 74.4) 80.0 (92.8, 64.8, 82.3) 79.8 (92.9, 68.4, 78.1)

(a) Per class precision values for logistic regression. (b) Per class recall values for logistic regression.

(c) Per class precision values for decision trees. (d) Per class recall values for decision trees.

Fig. 2: Per class influence of the feature selection on fairness.

low as (44%) with a precision of 81% and recall of only 31%.
Low recall means that all the links detected as intermediate
are indeed intermediate, however only a small part of the total
intermediate links in the data is detected. The model needs
improvement to detect more intermediate links accurately for

better and fairer recognition of this minority class.
Smoothing the RSSI over 10 packets increases the per-

formance to 89% and 91% respectively (line 2 in the table)
while generating certain synthetic features further improves
the results by 2-3 percentage points. Concretely, the fourth



TABLE III: Comparison of various data resampling strategies using linear and non-linear ML algorithms.

Algorithm Resampling Acc. [%] Precision [%] Recall [%] F1 [%]

Linear (Logistic)
None 96.8 96.6 (98.8, 69.9, 98.9) 96.8 (99.0, 55.2, 98.6) 96.7 (98.9, 61.7, 97.4)
RUS 92.2 92.3 (97.1, 90.2, 89.6) 92.2 (93.9, 86.0, 96.7) 92.2 (95.5, 88.0, 93.0)
ROS 92.2 92.3 (97.1, 90.2, 89.6) 92.2 (93.9, 86.0, 96.7) 92.2 (95.5, 88.0, 93.0)

Non-linear (DTree)
None 97.0 97.0 (98.9, 66.9, 97.5) 97.0 (98.6, 67.0, 98.1) 97.0 (98.7, 67.0, 97.8)
RUS 93.1 93.1 (96.2, 90.2, 93.0) 93.1 (94.6, 89.0, 89.6) 93.1 (95.4, 89.6, 94.3)
ROS 93.2 93.2 (96.2, 90.4, 93.0) 93.2 (94.8, 89.0, 95.6) 93.2 (95.5, 89.7, 94.3)

line corresponding to each algorithm in the table shows that
learning from the feature set of RSSI , RSSI10, RSSISD,10

yields 92% and 93% accuracy, respectively. The high values
of precision and recall for these feature combinations can also
be visualized as in Figures 2a and 2b.

These results show that only using instant RSSI as a
feature with our imbalanced dataset is not sufficient to learn to
discriminate the minority intermediate class sufficiently well.
The F1 score for the intermediate class is only 44% for the
linear model and 50% for the non-linear model trained with
RSSI only. Similarly, also the precision and recall results
for the intermediate class are modest for RSSI only. As
visualized in Figures 2c and 2d, precision is 76% and recall
is 38% for the intermediate class.

When the two models are trained with a combination of
features, namely RSSI , RSSI10, RSSISD,10, the performance
of the intermediate class increases by more than 44%, resulting
in a F1 score of 88% for the linear model and 89% for the
non-linear model. This large increase in performance, leading
to a fairer classification, also comes with slight increases of
1 − 2% in the F1 scores of the majority classes. According
to Figure 2a this feature combination results in a very good
precision on all three classes for the linear model, namely
97% on good and 90% on intermediate and bad respectively.
For the non-linear number, the values depicted in Figure 2c
are all very high as well, namely 96% on good and 90%
on intermediate and 93% on bad classes. It can be seen that
the non-linear model is slightly more precise at determining
bad links with a slight penalty for good links compared to
the linear model. The recall values are also very high for
both models. According to Figure 2b, the recall is 94% on
good and 86% on intermediate and 97% on bad classes when
the model is trained with the linear logistic regression, while
Figure 2d presents that the recall is 95% on good and 89%
on intermediate and 96% on bad classes when the model is
trained with the non-linear decision tree. It can be seen from
these results that the advantage of the DTree model comes
from its ability to yield higher recall values showing that
not too many true positive have been missed in classification.
While some of the intermediate class links are still missed as
there is about 10 percentage points difference compared to the
other two classes (bad and good), RSSI , RSSI10, RSSISD,10

feature set provides the highest fairness.
The feature analysis also shows that by smoothing the train-

ing data, therefore removing noise and transitory fluctuations

and capturing the boundaries of the variations, the learner can
improve its performance and become fairer on the intermediate
class. It is observed that the transient fluctuations are more
prominent on the intermediate class, which is conforming to
the findings of the literature [18].

V. COMPENSATING FOR THE MINORITY CLASS IN THE
TRAINING DATA TO IMPROVE PER CLASS FAIRNESS

To compensate for the imbalanced class in the training
data, and mitigate bias, the ML literature suggests employing
resampling methods developed using statistical tools. These
methods modify the distributions of the classes and re-balance
the dataset. For our work, we consider two simple standard
candidates; i) random oversampling (ROS), ii) random under-
sampling (RUS). The ROS [33] approach considers duplicating
the trace-set entries of the minority classes for all class
sizes to reach the size of the majority class. The resultant
resampled dataset is larger than the original. Contrarily, the
RUS [33] approach reduces all majority class sizes to the size
of the minority class by randomly eliminating instances from
other larger classes. Therefore, the obtained resampled dataset
becomes smaller.

Table III presents the results of evaluation for the selected
resampling strategies. For both classes of algorithms, it can
be seen that employing RUS and ROS resampling strategies
degrades the accuracy, precision, recall and F1 score. For
the linear model and no resampling, the accuracy, precision,
recall and F1 are 96% and 97% respectively. After employing
resampling, they all drop by 4% to 92% and 93% respectively.
However, looking at the per-class break-downs in Table III, a
more detailed insight can be acquired, where the performance
discrimination on the majority classes decreases, expressively,
the precision for the good class drops from 98% and 97% for
the linear model and from 98% and 96% for the non-linear
model, while the precision for the bad class drops from 98%
to 89% for the linear model and from 97% to 93% for the
non-linear model. However, the precision for the intermediate
class increases by over 30 percentage points from 69% to 90%
for the linear model and from 66% to 90% for the non-linear
model. Similar conclusions can be drawn for the other metrics.

The results in this section show that when optimizing the
overall performance of the classifier, without consideration to
per class fairness, the best results are obtained on the actual
dataset resulting in 97% accuracy, precision, recall and F1
scores. However, in this case the performance of recognizing



TABLE IV: The impact of linear and non-linear ML algorithms on the effectiveness of the ultimate LQE model.

Type Algorithm Acc. [%] Precision [%] Recall [%] F1 [%] Training Time [s]

Baseline Majority classifier 33.3 11.1 (33.3, 0.0, 0.0) 33.3 (0.0, 0.0, 0.0) 16.7 (50.0, 0.0, 0.0) 0.6

Linear
Logistic regression 92.2 92.3 (97.1, 90.2, 89.6) 92.2 (93.9, 86.0, 96.7) 92.2 (95.5, 88.0, 93.0) 2.5
SVM (linear kernel) 92.1 92.2 (97.4, 90.0, 89.2) 92.1 (93.7, 85.8, 96.8) 92.1 (95.5, 87.8, 92.8) 93.6

Non-linear
DTree 93.1 93.1 (96.2, 90.2, 93.0) 93.1 (94.6, 89.0, 95.6) 93.1 (95.4, 89.6, 94.3) 1
MLP 93.4 93.4 (96.7, 90.5, 93.0) 93.4 (94.9, 89.5, 90.0) 93.4 (95.8, 90.0, 94.3) 93.4
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(a) Multi-class ROC curve for logistic regression.
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(b) Multi-class ROC curve for decision trees regression.

Fig. 3: Multi-class receiver operating characteristic (ROC) representations portraying the performance of the two classification models.

the minority classes, namely intermediate links is up to 67%
achieved by the non-linear model. In cases where correctly
discriminating all classes is a requirement, then resampling
is the recommended approach as it increases the correct
discrimination, i.e., fairness, of the intermediate links by over
20%.

VI. PERFORMANCE EVALUATION OF THE MODEL

We now compare the proposed DTree model with the other
three ML models and a majority baseline, as summarized
in Table IV. In general, non-linear ML-based LQE models
performed slightly better than the linear counterparts within
a tiny margin of about 1%. This confirms the relatively non-
linear nature of the problem and also verifies previous findings
where linear regression (linear algorithm) and neural networks
(non-linear algorithm) performed similarly [10].

The tiny margin observed in Table IV is also confirmed in
Figs. 3a and 3b, where the figures present receiver operating
characteristic (ROC) curve and the area under the curve (AUC)
values for each of the class, and their micro and macro
average performances. Indeed, non-linear model is slightly
better due to a higher AUC value compared to that of the
linear counterparts, for all link classes. This tiny margin is
mainly due to the fact that in Rutgers trace-set, nodes are
relatively close and in line-of-sight, and thus measurements
data highly likely follow normal distribution. Contrarily, in
case of non-line-of-sight and mobility scenarios, the input data
would no longer follow any known statistical distribution. This

is where non-linear counterparts, especially non-parametric
algorithms, would be advantageous. For intermediate links,
non-linear models outperformed the linear counterparts with
about 2 percentage points margin.

Considering computational complexity reflected in train-
ing time, as per the last column of Table IV, we clearly
demonstrate that the proposed LQE model based on DTree
outperformed other LQE models in terms of computational
complexity and at the same time, the DTree model accom-
plished one of the best performances for both the general
model and the intermediate link class. DTree takes only 1
minute to train as opposed to 2.5 minutes for the logistic
regression and it achieves slightly better performance (1%).
It takes 90 times less training time compared to MLP and the
performance compromise is less than 1%.

VII. SUMMARY AND FUTURE WORK

In this paper, we proposed a new decision tree based LQE
model so as to improve fairness on minority classes. We
compare the proposed classifier against three other ML ap-
proaches on a selected imbalanced dataset using five different
performance metrics. Our study reveals that using additional
metrics, such as F1 score to complement the widely used
accuracy can help identify suboptimal performance on im-
balanced datasets. For LQE, this means that the models are
unfair and tend to confuse the intermediate quality links with
bad quality links. To this end, we demonstrated the impact
of feature selection and resampling techniques on improving



per-class classification. On the selected dataset, we showed
that the performance on the minority class can be increased
by over 40% through feature selection and by over 20%
through resampling, leading to increased fairness. We also
showed that non-linear models seem to be more appropriate
for the problem, however, their advantage over linear models
is marginal. Finally, we demonstrated that once training time
is also taken into account, the proposed decision tree based
model outperforms all the other considered models.

As a future work, we plan to extend the considered ML
models to multi-technology LQE estimation as well as to use
the recently developed LIME [34] library for explainable deep
learning to further investigate fairness aspects on such models.
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triangle metric: Fast link quality estimation for mobile wireless sensor
networks,” in International Conference on Computer Communication
Networks, Zurich, Switzerland, 2-5 August 2010.
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