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Abstract Discretization by rasterization is intro-

duced into the method of images (MI) in the context of

3D deterministic radio propagation modeling as a way

to exploit spatial coherence of electromagnetic prop-

agation for fine-grained parallelism. Traditional alge-

braic treatment of bounding regions and surfaces is

replaced by computer graphics rendering of 3D

reflections and double refractions while building the

image tree. The visibility of reception points and

surfaces is also resolved by shader programs. The

proposed rasterization is shown to be of comparable

run time to that of the fundamentally parallel shooting

and bouncing rays. The rasterization does not affect

the signal evaluation backtracking step, thus preserv-

ing its advantage over the brute force ray-tracing

methods in terms of accuracy. Moreover, the render-

ing resolution may be scaled back for a given level of

scenario detail with only marginal impact on the

image tree size. This allows selection of scene

optimized execution parameters for faster execution,

giving the method a competitive edge. The proposed

variant of MI can be run on any GPU that supports

real-time 3D graphics.

Graphical Abstract

Keywords Method of images � 3D radio ray tracing �
Propagation prediction � Algorithm optimization

1 Introduction

The prediction of electromagnetic wave propagation is

at the core of any wireless system design and essential

for many services. When accompanied with detailed

knowledge of the environment geometry, advanced

ray-tracing techniques can take into account the

majority of paths the real wavefront would traverse

and model actual physical phenomena responsible for

propagation of electromagnetic waves. Advanced

channel characteristics, including delay spread and

direction of arrival can be calculated from multipath

traces, which are not readily available in pure

stochastic propagation predictions.

Two computationally distinct radio ray-tracing

approaches have been followed since early begin-

nings. The first, often seen as the brute force approach,
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effectively traces a large number of rays from the

transmitting source in all directions into the scene,

while the second, known as the method of images,

evaluates feasible propagation regions without resort-

ing to a single ray granularity. The latter approach

builds on the geometrical properties of a scene and is

characterized by excellent prediction accuracy while

modeling reflections and through-wall transmissions.

In the following, we refer to the first group of

algorithms as the shooting and bouncing rays (SBR)

algorithms and to the second as the MI (method of

images) algorithms.

We have seen numerous refinements of the method of

images in the past twodecades. In greatmajority, they are

almost universally based on computational geometry for

the source image tree construction, mathematically

describing either regions of physically feasible ray paths

or shapes of visible parts of surfaces involved in

interactionswith such paths. Undoubtedly, the advantage

of algebraic treatment is high accuracy, even for distant

areas. On the other hand, the SBR algorithms cast rays

from the source in a limited set of directions, thus

reducing accuracy with distance, but still produce

valuable information on signal propagation in the areas

of interest. The major advantages of such discretization

are simplified numerical treatment of inherent problems

and greater level of task independence, giving rise to

efficient parallel implementations.

Here we introduce discretization into the MI as

well. In order to speed up computationally demanding

tasks involved in the three-dimensional source image

tree creation process, finer-grained concurrency

exploiting parallel nature of polygon rasterization is

proposed. One could make an analogy between the

rendered pixels and rays in a ray-shooting algorithm.

The advantage of the MI is that it does not relay on the

concept of a reception sphere to detect rays passing by

the receivers, which is a common problem addressed

by the SBR algorithms. We further compare the two

approaches throughout the paper.

Discretization by rendering allows method of

images to be efficiently run on a massively parallel

architecture. By relying on the standard graphical

interface, efficient implementations on today’s con-

ventional 3D accelerators are possible. OpenGL

terminology is used in the paper, although the

presented concepts are not limited to the chosen

programming interface.

The accuracy of the radio ray tracing is not pursued

here because we are dealing only with the algorithmic

aspects of the technique that has minor influence on

the prediction outcome. Both, computational geome-

try based method and the proposed rendering approach

build identical visibility trees up to a given precision.

Thus, no validation using field measurements is

necessary. Moreover, the subject of prediction accu-

racy has been studied extensively in the past two

decades with abundant literature available to the

interested reader.

The contributions of this paper can be summarized

as follows:

– Rasterization is effectively applied to the 3D radio

signal prediction domain.

– Method of images, traditionally based on compu-

tational geometry, is discretized.

– Derived is the method’s asymptotic run time on

massively parallel architectures present in today’s

graphical 3D accelerators.

– Analogy is established between rendered pixels

and shooting and bouncing rays.

– Demonstrated are performance benefits of the

discretization over the shooting and bouncing rays.

In the following, Sect. 2 reviews the related work.

Basic steps in the source image tree creation are

explained in Sect. 3. The algorithm for the image tree

construction and traversal is wrapped up in Sect. 4.

We show that the parallel run-time complexity of the

proposedmethod is close to that of the SBR algorithms

executed at comparable spatial resolution in Sect. 5.

Finally, the run-time performance is evaluated in

Sect. 6, followed by the conclusion in Sect. 7.

2 Related Work

In global illumination domain, ray tracing is based on

a physical optics approximation, where paths of light

rays are followed through the scene, with processing

of various sorts on surface intersections in order to

reproduce reality as close as possible. Ikegami et al.

[1] were among the first who showed the usefulness of

ray-tracing technique for radio wave propagation

prediction in 1991. A larger set of electromagnetic

effects are typically dealt with at radio frequencies.

For example, diffraction [2] and interference are
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generally not considered in the global illumination

problem, although some exceptions exist [3].

First, we recall briefly the basics of the method of

images and its tree building and signal backtracking

steps. The method is designed around the observation

that rays reflected from a surface seem to originate

from a fictitious transmission source, which can be

found symmetrically on the other side of the surface

along its perpendicular [4]. Such a fictitious source is

called a source image. Multiple reflections are

accounted for by considering existing images as new

transmission points, which recursively leads to the

image tree. Surfaces have a finite shape, limiting the

reflected regions to polyhedron volumes, which helps

in reducing the size of a tree. If the image tree

describes only viable propagation paths, then it is

referred to as a visibility tree.

Image trees are generally larger than visibility trees

and require elaborate intersection tests between the ray

paths and scene objects in the second backtracking

step. Note that a backtracking is always required to re-

create signal paths, even in a strict visibility tree, at

least to establish the length of a path and all the

reflection coefficients affecting the radio signal power.

Image trees are not limited solely to reflected paths.

Through-wall transmissions can be dealt with suc-

cessfully by extending the source mirroring onto walls

that are identified in the so-called transmission regions

[5]. On the other hand, corner diffractions can be

adequately handled by the method of images only in

2D propagation scenarios [6]. Namely, a corner acts as

a source of rays, generally introducing an infinite

number of new sources unless it is represented by a

single point. Therefore, in 3D diffraction must be

accounted for by some other means.

Soon after its introduction, proposals to reduce the

over dimensioned image tree emerged. In the follow-

ing, we restrict ourselves to the published works that

support full 3D environment modeling through the

entire computation and to the ones being most relevant

to our proposal.

The elaborate method of regions [4] constrains

physically feasible paths by introducing spatial

regions in the shape of convex polyhedra into the

image tree construction. Computing viable reflection

or transmission regions translate to the polyhedra

intersection problem, the solution of which involves

intensive computational geometry. Simplified version

of the spatial regions treatment can be found in [7],

where the geometry of objects is restricted to

horizontal walls of arbitrary shape and strictly rectan-

gular vertical walls.

Instead of bounding regions, [8] deals with a set of

visible surfaces contained within such feasible

regions. Surfaces are represented by polygons as seen

from the source image after the surface corners have

been projected to the viewing plane. In order to extract

polygons describing only visible parts of a surface,

each projection is processed by a sweep-line algo-

rithm, followed by the well-known graph-theoretic

polygon subtraction to account for hidden parts of a

surface. The reflection visibility window is repre-

sented by yet another polygon in the computation,

generally hindered by the treatment of many special

cases.

Visibility tree in [9] is only partially reduced

image tree because it is based on a polar-sweep of

2D space. When applied to 3D scene in the second

backtracking step, paths described by the tree may

or may not give rise to actual paths and further

checks are still needed. Further, being a hybrid 2D/

3D method, ground, floors and ceilings must be

treated separately.

Further attempts to reduce image tree size while

keeping the support for full 3D computation involve

various pre-processing steps on the input geometry,

such as dividing surfaces into tiles and using the tile

center as the ray interaction point [10], or pre-

computing intermediate values needed in the highly

repetitive intersection tests, such as angular relations

between the scene objects [11].

The above improvements strive to reduce the

computational complexity of the problem. On the

other hand, despite the increasing availability of

parallel hardware, solving the problem in a parallel

way has been largely avoided. The reason can be

related to the fact that the imaging technique is not as

parallel as the SBR technique [12], for which various

hardware accelerators have been intensively studied,

such as Cell architecture [13], SaarCOR processor

[14], and FPGAs [15].

The straight-forward way to parallelize the method

of images is to partition the image tree and use some

form of dynamic load balancing, such as splitting the

area database in regions and using work-pool concept

[16]. The authors of [16] characterize their approach

as being fine-grained. However, compared to our

proposal, it is still rather coarse and better suited for
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parallel computers in general and less for the GPU-like

massively parallel architectures.

The closest to the fine-grained parallelization

presented here is the rasterization of beams in [17],

with beams being considered equivalent to the feasi-

bility regions. Unfortunately, Schmitz et al. designed

custom rendering pipeline that can be applied only to a

2D version of propagation prediction and cannot be

extended to the third dimension.

GPUs has been studied extensively in the context of

shooting and bouncing rays [18–20]. Recent work

includes ray launching based on the NVIDIA OptiX

framework [21, 22], GPU-based kd-tree accelerated

beam tracing [23], channel modelling using a 3D game

engine [24], and others. By aggregating rays that

interact with the same surfaces, the SBR algorithm

effectively converges to the method of images. Thus,

the SBR is closely related and it serves as the

evaluation reference.

3 Rendering Image Tree Branches

Two tasks prevail in the 3D image tree construction.

First, a form of spatial ordering has to be established

between the scene objects in one way or another to

constrain viable propagation regions and determine

surface visibility. Second, shapes of regions or visible

parts of surfaces have to be recognized and main-

tained. Convex polyhedra intersection and polygons

subtraction are two common techniques proposed to

solve these two problems with high precision.

Similar problems arise in the rendering of an image

onto the computer screen, which is represented

internally by a discrete framebuffer. Here, visibility

of a scene object and its shape are resolved by

combining perspective projection with the hidden

surface removal. By using the so called z-buffering,

spatial ordering is achieved in a discrete way on a

pixel-by-pixel basis. One can identify surfaces and

their affected areas hit by a spherical wavefront from a

2D rendering, as illustrated in Fig. 1. First, a 3D scene

consisting of three wall-shaped objects (a) is shown

together with a view frustum from the source of

transmission. The actual rendering (b) exposes visible

surfaces hit by the line-of-sight radio waves. Six

frustums with 90-degree field of view should be

stacked together in a cube to cover the entire space.

3.1 Rendering Reflections

According to the method of images, the reflection

from a point source virtually originates from its image

located symmetrically to the reflecting plane. Render-

ing a mirror image basically uses the exact same

principle, only that the entire view frustum is mirrored.

The reflection region is further bound on its sides by

the shape of the reflecting surface and in front by the

reflecting plane. Stencil and plane clipping operations

in graphics shaders perform equivalent tasks, effec-

tively limiting the rendered image to the view within

the reflection region. In Fig. 1, the visible parts of all

surfaces in the reflection region of the wall with a

window (c) are revealed in framebuffer (d). First, a

stencil in the shape of the wall’s front surface is set up

by redrawing the front surface over image (b). We

need to redraw the object over the resolved depth

buffer in order to define stencil only for the visible

pixels. Next, the view frustum from (a) is mirrored

over the reflecting plane and the scene is drawn over

the stencil mask while being also clipped off at the

reflecting plane. The result of the above sequence of

operations is depicted in framebuffer (d), which is

augmented with the original view to be more concise.

An actual implementation would draw only the shaded

areas.

The above technique of rendering reflections can be

applied to reflections within reflections, allowing

stepping through the image tree using the recursive

algorithm presented in Sect. 4. The technique is not

constrained by the prescribed surface primitive.

Namely, stencil supports arbitrary shaped surfaces,

including those having holes and consisting of mul-

tiple parts. Being less restrictive in surface definition

also implies less image tree nodes. Using the above

rendering approach to identify scene objects encoun-

tered by the reflected spherical wavefront follows the

laws of geometric optics and is accurate down to a

single pixel.

3.2 Rendering Double Refractions

Modeling refraction phenomena in a similar way is

more challenging and some compromises must be

made. At the core of the problem is the distortion of a

spherical wavefront as it enters different medium of

transmission. As the radio rays pass into different

medium, the shape of a surface hit by the distorted
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wavefront or the volume in which these rays spread

cannot be described by a simple polygon or convex

polyhedron. Thus, proposals that incorporate trans-

mission branches in the image tree normally model

objects as slabs with predefined thickness, such as

walls, for which double refraction on the front and on

the back surface to some extent cancels out the error. A

straight line of the through-the-object rays is usually

assumed, which is a good approximation only for a

thin slab located far from the source. In order to keep

focus of the paper on the algorithmic aspects and

minimize influence on the calculated signal, we make

the same assumptions and, in the following, only

briefly discuss a potential improvement.

In reality, due to Snell’s law of refraction, a

spherical wavefront is transformed into a hyperbolical

*
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*

(b)(a)

(d)(c)

(f)(e)

Fig. 1 Rendering of

surfaces hit by a spherical

wavefront; a view frustum in

the sample scene (a) defines
line-of-sight surfaces in

framebuffer (b). Surfaces hit
by the reflected (c) and later

double-refracted

(e) wavefront are revealed in
framebuffers (d) and
(f) using standard stencil

test, z-buffering and plane

clipping
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shape [25] after it passes through a plane interface into

different propagation medium. An attempt to find a

common viewpoint by extending refracted rays back

toward the source would necessary fail. For the same

reason, double refraction on parallel plane interfaces,

with the signal re-entering the initial transmission

medium on the second refraction, realigns the double

refracted ray’s direction with the incident ray’s

direction. However, as illustrated in Fig. 2, a small

parallel displacement remains.

Because ray displacement depends on its incident

angle hinc, an error-free through-wall view that would

accurately depict scene hit by the double refracted

wavefront is not possible. Nevertheless, a translation

of the viewpoint in the direction opposite to the surface

normal, i.e., D in Fig. 2, can reduce the misalignment

angle. The misalignment angle e between the double-

refracted ray and the matching line-of-sight direction

from the D-corrected viewpoint location is defined as

e ¼ hinc � tan�1 r=ðlþ d � DÞð Þ ð1Þ

with

r ¼ l tan hinc þ d tan htr; ð2Þ

where l is the source to wall distance, d is the depth of a

wall, hinc is the ray’s angle of incidence and htr is the
angle of transmission for media refractive indices n1
and n2 in compliance with sin htr ¼ ðn1=n2Þ sin hinc.
Note that e shown in Fig. 2 is for a viewpoint matching

the source.

When rendering a refraction view through a wall,

correction D would ideally be selected in a way to

minimize the expected misalignment angle over the

incident angles for the actually visible parts of the

wall. As mentioned previously, finding the best

translation for a given view is beyond the scope of

this paper. The interested reader is referred to the

forthcoming publication on the subject.

In order to illustrate the concept of rendering a

transmission region, we start with the content of frame-

buffer (d) inFig. 1,where twovisible surfaces has already

been identified. Let the next branch in the image tree be a

double refraction through the surface no. 1. In order to

render the transmission region, we first define a stencil

mask in the shape of this surface. We can do that by

redrawing the surface using the depth buffer, the stencil

buffer and the view frustum from the last step. When the

transmission stencil is set up, the last frustum is redrawn,

this time using front face of the wall no. 1 as the clipping

plane. Rendering (f) in Fig. 1 shows the visible surface

that is hit by the propagating wavefront after being

reflected and double-refracted by the selected walls.

It has to be noted that the double refraction

misalignment error affects only visibility of objects

while the through-wall path of a ray in a signal

backtracking procedure still remains exact. When all

the intermediate planes, matching refraction coeffi-

cients, source and destination are known, re-creating

exact path is simply a matter of geometry.

4 Image Tree Traversal

The framebuffer memory requirements are high and

storing the entire image tree for later traversal would

be prohibitively expensive. Thus, the signal evaluation

step must be interleaved with the tree discovery,

allowing the reuse of the framebuffer space.

l d

r

∆

n1 n2

θinc

θtr

ε

*

Fig. 2 Double refraction on parallel planes

Algorithm 1 Recursive image tree traversal
1: procedure step(type, surface, view , depth)
2: set stencil test condition to stencil == depth − 1;
3: increment stencil for visible surface pixels
4: by redrawing surface in view ;
5: If type == REFLECT then
6: mirror view over surface and set next view ;
7: If type == REFRACT then
8: translate view toward surface and set next view ;
9: set stencil test condition to stencil == depth;
10: draw next view ;
11: identify visible receivers;
12: accumulate signal in visible receivers;
13: If depth < max depth then
14: identify visible surfaces;
15: For each visible surface do
16: step(REFLECT , surface, next view , depth +1);
17: step(REFRACT , surface, next view , depth +1);
18: end
19: unwind stencil ;
20: end
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Initially, we draw a scene six times, each time using

a frustum covering one-sixth of the space. The

viewpoint of each of the six views, i.e., eye location,

is at the source of transmission. We denote such views

as baseline views. Next, line-of-sight receivers are

identified. Signal is accumulated in the identified

receivers and Algorithm 1 is called twice for each

visible surface, once for the reflection branch and once

for the double refraction branch of the image tree. The

identification of visible receivers and the identification

of visible surfaces are also part of the recursive step

and explained shortly.

While the framebuffer’s color and depth com-

ponents are overwritten repeatedly in Algorithm 1,

the framebuffer’s stencil component acts as a

virtual stack. By incrementing stencil buffer values

for a visible part of the surface that is currently

targeted for a reflection or double refraction, next

stencil is pushed on the virtual stack at the

beginning of a recursive call. This is possible

because a stencil is always contained within the

stencil of the shallower recursion step. At the end

of the recursion, one can simply pop or unwind the

last stencil by drawing a full viewport quad over

the existing stencil and requesting a stencil decre-

ment. 8-bit stencil components are common today,

enabling up to 28 interactions on each viable signal

path.

Having set up a stencil, we mirror or translate the

current view frustum, effectively computing the

source image for the reflection or for the double

refraction branch of the image tree. Next, the trans-

formed view is actually drawn using surface color-

coding and the most recent stencil. The color-coding is

exploited a few steps later while identifying visible

surfaces.

In order to establish the reception points visibility

in the rendered view, it suffices to compare each

reception point depth—while being observed from the

source image location—with the already computed

depth buffer and test the point’s side relative to the

frustum’s front clipping plane. The computation

actually mirrors the transformations involved in the

drawing of a point but with no actual rendering. It can

be implemented entirely in a custom shader acting on

its own visibility framebuffer while being fed with the

set of reception points and with the current depth

buffer as a depth texture.

Once the location of a receiver is confirmed to be

visible, signal is accumulated by retracing source images

down to the transmission source. The signal accumula-

tionprocedure canbe any standard techniqueof summing

coherent rays taking into account antenna pattern,

polarization, material composition, frequency, etc.

Visible surfaces in the current rendering need to be

identified next in order to continue with the source

image tree traversal. Because any rendering can

produce erroneous pixels that protrude between trian-

gle seams for the obstructed surfaces, invalid pixels

should also be filtered out. By adopting color-coding

of surfaces in the earlier rendering step, the task

translates to computing a color histogram. A surface

with the number of drawn pixels above the threshold is

then recognized as visible. Note that the threshold can

also be used to balance the prediction speed versus

accuracy by ignoring smaller or far away surfaces.

Finally, two recursive calls for each visible surface

take care of subsequent reflections and transmissions.

5 Complexity Analysis

Discrete MI can be viewed as a ray-shooting algo-

rithm, which motivates the following comparison of

the proposed MI asymptotic behavior with that of an

SBR algorithm. In order to establish a common ground

between the two approaches, we first pair the non-

masked pixels of each rendering step with rays in a

ray-shooting algorithm.

Let the SBR algorithm initially launch r rays and

the discrete MI use a framebuffer with p pixels. Ray

equivalency is achieved when r ¼ 6p. The fact that

there is a variation in angular distribution between the

imaginary through-pixel rays while the SBR algo-

rithms commonly require uniform distribution of the

initial rays over all directions is irrelevant, because we

are only establishing problem size.

5.1 SBR Parallel Run Time

Central to any SBR algorithm is a search for the

nearest point in which ray intersects with objects of the

examined scenario. Trivial testing of a ray against

every object in the scene is inefficient due to linear

dependency on the number of scene objects. Opti-

mized data representation of a scene is needed for, on
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average, Oðlog nÞ search time, which is the theoretical

lower bound given n scene primitives [26]. Further,

m reception spheres must undergo similar intersection

tests, effectively increasing the problem size to nþ m.

Therefore, the processing of initial rays up to the first

interaction is of Oðr logðnþ mÞÞ time. Rays reflected

from the same surface are observed as a group. Such a

group is optimally processed in Oðs logðnþ mÞÞ time,

where s is the number of reflected rays from a single

surface. Similar conclusion can be drawn for a group

of rays involved in a single through-wall transmission.

The above tasks can be efficiently parallelized on a

standard GPU architecture. Assuming that c cores are

available on a generic GPU, the parallel run times

evaluate at Oðr=c logðnþ mÞÞ and Oðs=c logðnþ mÞÞ
time for the above two cases.

5.2 MI Parallel Run Time

Efficient rendering of views in the proposed discrete

MI needs to deal with similar optimization problems.

A search for the nearest point in the direction of a

through-pixel ray is replaced by a hidden surface

removal technique, which is a fundamental procedure

in computer graphics. Conceptually, one could use the

ray-tracing solution for hidden surface removal, which

limits the parallel rendering time to Oðs=c log nÞ, with
s now being equal to the stencil area pixel count or to

the number of pixels in the baseline views. In practice,

hardware z-buffer would probably be used to resolve

visibility of a pixel. In that case, visibility culling

algorithms are needed to approximate the above run-

time complexity, such as view-frustum culling, stencil

culling, back-face culling and occlusion culling.

Given that multi-pixel visibility tests in culling

algorithms are faster than ray-by-ray intersection tests,

a smaller constant factor is expected in the above

complexity. Although simple geometry tests exist for

removing objects not intersecting the view frustum

and for removing primitives facing away from the

viewpoint, occlusion culling needs more sophisticated

approach. Here, highly efficient occlusion culling

algorithms for special environments, such as densely

obstructed building interiors [27], can help match or

even surpass the SBR run-time complexity.

The rendering of a view is followed by the

identification of visible receivers. The visibility test

described in Sect. 4 cannot be directly compared to the

SBR handling of reception spheres, which is tightly

interwoven with the ray propagation through the

sphere-extended scene. However, the procedure is

closely related to the shadow mapping in computer

graphics. This allows identification of visible receivers

entirely on a GPU using specially designed shader,

which does actual visibility check using a shadow

sampler and a projective depth texture lookup. Thus,

reception point visibility can be established in O(m/

c) parallel time.

Next time-consuming step is identification of visible

surfaces based on a surface histogramming. Computing

a histogram inparallel has its limits becausemanypixels

map to the samebin,which implies some serialization of

updates. Using scatter-based technique from [28] the

parallel run-time is still kept atO(p/c). Further,O(p/c) is

also parallel run time complexity of drawing and

unwinding the stencil buffer.

5.3 Comparison

From the above, the discrete method of images comes

close to the SBR algorithm with respect to the

processing time needed for reflections and diffrac-

tions, i.e., Oðs=c logðnþ mÞÞ versus Oðs=c log nþ
m=cþ p=cÞ. The way receivers are handled gives some

advantage to the SBR asymptotic behavior only if the

number of receivers is prevailing factor in the problem

size, but at the cost of path accuracy, as discussed in

the next section. Assuming ray equivalency, r and

p are equal up to a constant. Thus, the same conclusion

applies when comparing initially shot rays with the six

baseline views.

6 Performance Evaluation

The performance evaluation tests were designed to

check the run-time characteristics of the algorithm in

comparison to the shooting and bouncing rays alter-

native on the same rendering hardware. The discrete

method of images was implemented as an indoor

wireless planner tool, closely following the concepts

outlined in this paper.

As a reference, in-house SBR tool based on the ray-

density normalization is used. The tool has been

already proven in several projects with telecommuni-

cation industry. It is highly optimized GPU-based ray

tracer using the NVIDIA OptiX ray-tracing engine,

which is adapted to the radio propagation
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environment. Scene objects are kept in a bounding

volume hierarchy entirely on a GPU, with rays

generated and traced through the scene in parallel

threads. The tool was selected over the commercially

available prediction tools because it could be fully

customized in order to match the total electric field

phasor computations in both tools. Further, diffraction

and scattering have been disabled as these effects are

not supported by the imaging technique. Knowing all

the intricate details of the implementation, no short-

cuts, such as dividing surfaces into tiles and other

closely-guarded trade secrets of commercial tools,

could bias the comparison.

The measurements have been performed on several

indoor scenarios, with the following results referring

to the office scenario shown in Fig. 3. The prediction

plane is located at 1.1 m above the ground with 3

reception points per meter. The transmitting dipole

operates at Wi-Fi frequency of 2.5 GHz. It is posi-

tioned near the office entrance at 2.2 m above the

ground and at 45-degree inclination.

First, we compare the performance of ray-equiva-

lent setups as defined in Sect. 5. The number of rays

for the SBR graph in Fig. 4 was fixed by the

icosahedron tessellation frequency of 12, resulting in

167,772,162 initial rays. Thus, the ray-equivalent

framebuffer size for the rasterization graph was set to

5,288 by 5,288 pixels. As expected, the running time

increases exponentially with the number of interac-

tions considered on the signal path, i.e., with the

number of ray segments for the SBR and with the

image tree depth for the MI implementation. The

rasterization approach was faster for the shallower

depths up to 5 interactions, while the SBR implemen-

tation was a clear winner at the higher number of

interactions. The faster exponential growth of the ray-

equivalent MI can be largely attributed to the time-

consuming memory transfers between the rasteriza-

tion GPU and the CPU, the latter being responsible for

the overall algorithm flow and signal accumulation.

Further, the MI under the test had a limited capability

of hidden surface removal, with only frustum and

back-face culling actually implemented. On the other

hand, the SBR run entirely on a GPU, including the

signal accumulation, and was not subject to such

limitations. Note that a GPU-only MI would be

possible; however the solution could not be used on

any rendering hardware that supports 3D graphics.

Another limiting factor is that the proposed recep-

tion point visibility check is linear in the number of

points vice versa the logarithmic dependency in the

SBR implementation, where the reception spheres are

merged with the scene in a single acceleration

structure. Then again, building such a structure adds

to the initialization time, shown as the higher vertical

offset of the SBR graph in Fig. 4.

The above tests favor SBR over the proposed MI at

ray equivalency, at least for deeper traces. However,

one must take into account the exceptional path

accuracy of the imaging technique to have an objec-

tive comparison. A faster computation of the discrete

method of images is possible because of the different

sources of prediction errors between the two

approaches. While some errors have non-algorithmic

origins, such as inaccurate description of the

Fig. 3 Office test scenario with transparent ceiling

0 1 2 3 4 5 6 7 8 9 10
0

200

400

600

800

1.000

1.200

1.400

1.600

1.800

Tree depth

Ti
m

e 
[s

]

ray shooting
rasterization

Fig. 4 Performance of optimized GPU-only SBR versus a

mixed GPU/CPU discrete MI at ray equivalency
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environment geometry, others can be attributed to the

choice of input parameters. The angular separation of

rays launched from the transmission source in the SBR

type of algorithms influences spatial precision of

computation, i.e., the ability of a ray to intersect

distant objects. Diverging rays can miss smaller

objects entirely and thus affect prediction at distance.

Another closely related source of prediction errors is

the use of a reception sphere to detect rays contributing

to the total received power. Ray-paths that intersect a

sphere are only approximate for a given reception

point. Moreover, multiple hits by rays from the same

wavefront require special treatment, with imple-

mented ray-density normalization being one of them,

which introduces further errors in the estimate of a real

signal.

On the other hand, the proposed discrete method of

images decouples these two sources of imprecision.

While the spatial precision is directly related to the

chosen framebuffer size, the ray-path is exact. There-

fore, ray-equivalent setup, as defined in Sect. 5, is not

a prerequisite for a comparable signal prediction

quality. While one cannot decrease the number of

launched rays without significantly affecting the result

in the SBR algorithm, there is only a minor penalty if

lower than ray-equivalent number of pixels is used in

the discrete method of images. Fig. 5 plots the size of

the image tree for the scenario in Fig. 3, i.e., the

number of reflections and transmissions, achievable

under different framebuffer sizes and tree depths. Note

how the tree size changes only marginally for larger

framebuffers. The converging tree size implies that for

a given scenario increasing the rendering resolution

does not produce much more views with previously

undetected details. Further, because ray-path precision

does not depend on the number of pixels used, one can

achieve a comparable prediction quality at lower

framebuffer size.

As shown in Fig. 6, the implemented discrete MI

stays below the SBR running time for depths up to 10

interactions if framebuffer size is reduced from 5k

(26,214,400 pixels) to 2k (4,194,304 pixels).

The surface plot in Fig. 7 shows the predicted

signal loss for the scenario under consideration using 4

megapixel rasterization. Six interactions were simu-

lated. Using larger framebuffer size showed only
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Fig. 5 Spatial resolution quantified through the image tree size

at various depths and framebuffer sizes
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Fig. 6 Performance of the rasterization approach versus the ray

shooting at comparable prediction accuracy; 167 million rays

were launched initially as opposed to 4 megapixel rasterization

Fig. 7 Predicted signal loss in dB; the prediction was run for 3

reception points per meter at 1.1 m height above the ground and

with 45-degree inclined dipole at Wi-Fi frequency near the

office entrance (red dot). Six interactions per ray were

considered. (Color figure online)

26 Page 10 of 12 3D Res (2016) 7:26

123



minor visual differences at the prediction plane edges,

amounting to less than 10 dB maximum deviations.

It should be noted that the running time of the

proposed method is linear in the number of reception

points. Increasing this number slows down the

proposed algorithm faster than it slows down the

SBR implementation with its logarithmic dependency.

7 Conclusion

This paper has introduced a discretization into the

well-known method of images for radio wave prop-

agation modeling. The source image tree being built is

exact visibility tree, thus no further validation of

discovered signal paths is necessary. The algorithm

has low starting overhead and significant level of

concurrency. Further, by tuning spatial precision to a

scenario under consideration it can outperform the

SBR alternative for reasonable configuration settings

while retaining the MI prediction quality. In the

proposed form it can be run on most of today’s 3D

graphical processors. GPU-only implementation is

also foreseen in order to avoid remaining unnecessary

memory transfers.
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