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1. Introduction 

This report describes algorithms for reduction of diffraction edges, developed for use with 

the radio frequency ray tracing application developed in the ARRS project “L2-7664 - 

Advanced Ray-Tracing Techniques in Radio Environment Characterization and Radio 

Localization”. The ray tracing application makes use of Nvidia CUDA and OptiX engine and 

runs on Nvidia GPU cards. It performs radio propagation computation in a scene that has been 

designed with a custom developed scene design editor. The scene consists of walls (including 

floors and ceilings) with optional openings for windows and doors. Each wall has edges, 

which are included in the complete scene, however not all of these edges actually act as 

diffraction edges. The task of the diffraction-edge-reduction algorithm presented in this report 

is to remove superfluous edges and keep only those that actually cause radio wave diffraction. 

In the following three chapters, radio propagation scene description will be explained first, 

followed by presentation of two different edge reduction approaches, their corresponding 

algorithms and impementations. 
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2. Radio Propagation Scene Description 

The scene is built of walls (rectangular cuboids or boxes), which optionally contain 

openings (holes) for windows or doors. Floors and ceilings are also designed as walls that are 

positioned horizontally, as well as some other structures (e.g. tables). Complex wall shapes 

(floor, ceiling …) can be created by suitably placing openings, which are rectangles 

themselves, but can be rotated arbitrary within the wall, can overlap each other, and can 

extend past the wall borders. 

Figure 1 shows a scene that has been used as the test scene during the development of the 

diffraction edge reduction algorithms described in the next two chapters. The ceiling is part of 

the scene, however in the figure it is made transparent so that the interior space is visible. 

Diffraction edges are not shown in this picture. 

 

Figure 1: Test scene (with ceiling removed) 

2.1. Walls 

Figure 2 shows a basic wall (without openings). Each wall is defined by its length, 

thickness and height (in m). Its final position is defined by rotation and translation parameters, 

which are compatible with GLM (OpenGL Mathematics) processing. The numbers displayed 

are indices (sequential numbers) of the cuboid’s faces as used by the edge reduction 

algorithm. 
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Figure 2: Basic wall 

The scene editing application creates a scene description file in the XML format describing 

all the walls. Below is an example of this file for a simple scene containing only a single wall 

(2 m long, 10 cm thick and 1.6 m high), without rotation and with a small translation. 

For each wall, the description contains also its triangulated surfaces (six of them for a 

simple wall). The surface ids in the XML file below correspond to the surface indices in 

Figure 2. Each surface is represented by a number of triangles; in our simple example, there 

are only simple rectangular surfaces and each is represented by two triangles. Triangulated 

description becomes more elaborate for walls with openings. 

Each triangle is represented by three consecutive points, so each such triplet of points can 

be considered an independent group with index wrap-around when appropriate (e.g. for 

definition of triangle’s edges). A point is marked with e=’1’ if the edge from the previous 

point (using wrap around) coincides with the cuboid’s edge; the rest are the surface’s internal 

(triangles’) edges generated by the triangulation algorithm. 

<?xml version="1.0" encoding="UTF-8"?> 

<architecture> 

 <scene> 

  <wall> 

   <material> 3 1 </material> 

   <dimension> 2.00000000 0.10000000 1.60000000 </dimension> 

   <rotation> 0.00000000 0.00000000 0.00000000 </rotation> 

   <translation> -0.33500000 0.00000000 0.00000000 </translation> 

   <separating_floors> 0 </separating_floors> 

   <floor> 0 </floor> 

   <surfaces> 

    <surface id="0"> 

     <point e="0"> 2.00000000 0.00000000 1.60000000 </point> 

     <point e="1"> 0.00000000 0.00000000 0.00000000 </point> 

     <point e="1"> 2.00000000 0.00000000 0.00000000 </point> 

     <point e="0"> 0.00000000 0.00000000 0.00000000 </point> 

     <point e="1"> 2.00000000 0.00000000 1.60000000 </point> 

     <point e="1"> 0.00000000 0.00000000 1.60000000 </point> 

    </surface> 

    <surface id="1"> 

     <point e="0"> 0.00000000 0.10000000 1.60000000 </point> 

     <point e="1"> 2.00000000 0.10000000 0.00000000 </point> 

     <point e="1"> 0.00000000 0.10000000 0.00000000 </point> 

     <point e="0"> 2.00000000 0.10000000 0.00000000 </point> 

     <point e="1"> 0.00000000 0.10000000 1.60000000 </point> 

     <point e="1"> 2.00000000 0.10000000 1.60000000 </point> 

    </surface> 

    <surface id="2"> 

     <point e="0"> 2.00000000 0.10000000 0.00000000 </point> 

     <point e="1"> 0.00000000 0.00000000 0.00000000 </point> 

     <point e="1"> 0.00000000 0.10000000 0.00000000 </point> 

     <point e="0"> 0.00000000 0.00000000 0.00000000 </point> 

     <point e="1"> 2.00000000 0.10000000 0.00000000 </point> 

     <point e="1"> 2.00000000 0.00000000 0.00000000 </point> 

    </surface> 
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    <surface id="3"> 

     <point e="0"> 2.00000000 0.10000000 0.00000000 </point> 

     <point e="1"> 2.00000000 0.00000000 1.60000000 </point> 

     <point e="1"> 2.00000000 0.00000000 0.00000000 </point> 

     <point e="0"> 2.00000000 0.00000000 1.60000000 </point> 

     <point e="1"> 2.00000000 0.10000000 0.00000000 </point> 

     <point e="1"> 2.00000000 0.10000000 1.60000000 </point> 

    </surface> 

    <surface id="4"> 

     <point e="0"> 2.00000000 0.00000000 1.60000000 </point> 

     <point e="1"> 0.00000000 0.10000000 1.60000000 </point> 

     <point e="1"> 0.00000000 0.00000000 1.60000000 </point> 

     <point e="0"> 0.00000000 0.10000000 1.60000000 </point> 

     <point e="1"> 2.00000000 0.00000000 1.60000000 </point> 

     <point e="1"> 2.00000000 0.10000000 1.60000000 </point> 

    </surface> 

    <surface id="5"> 

     <point e="0"> 0.00000000 0.10000000 1.60000000 </point> 

     <point e="1"> 0.00000000 0.00000000 0.00000000 </point> 

     <point e="1"> 0.00000000 0.00000000 1.60000000 </point> 

     <point e="0"> 0.00000000 0.00000000 0.00000000 </point> 

     <point e="1"> 0.00000000 0.10000000 1.60000000 </point> 

     <point e="1"> 0.00000000 0.10000000 0.00000000 </point> 

    </surface> 

   </surfaces> 

  </wall> 

 </scene> 

</architecture> 

When a wall contains one or more holes, there are additional tag(s) ‘hole’ for each hole, 

defining its parameters – 2D size rotation and translation (position) relative to the wall: 

... 

  <wall> 

   <material> 0 0 </material> 

   <dimension> 8.50000000 0.30000000 2.80000000 </dimension> 

   <rotation> -0.00000000 0.00000000 3.14159265 </rotation> 

   <translation> -3.33500000 -6.20000001 0.00000000 </translation> 

   <separating_floors> 0 </separating_floors> 

   <floor> 0 </floor> 

   <hole> 

    <dimension> 1.60000000 1.10000000 </dimension> 

    <rotation> 0.00000000 </rotation> 

    <translation> 1.05000000 1.00000000 </translation> 

   </hole> 

   <surfaces> 

... 

The ‘surfaces’ information is modified as necessary: for each non-overlapping hole, four 

surfaces are added (penetrating the wall), and the main two wall’s surfaces ( id “0” and “1”) 

are modified accordingly and described with a more complex triangle pattern (instead of only 

two symmetric triangles generated for a rectangle). 

The list of wall edges (which are candidates for diffraction edges) could be generated 

directly from the cuboids representing the wall and its holes. However, this would become a 

complex task in case of overlapping holes or holes extending past the wall boundaries, 

therefore the edges are rather extracted from the triangulated surfaces’ description. 

2.2. Diffraction edges 

Each wall (or a non-overlapping hole) has twelve edges, which are candidates for 

diffraction edges in the final scene. However, the four edges representing thickness are 

(usually) short, their diffraction effect is therefore considered negligible and they are ignored, 

simplifying further processing. Figure 3 shows the remaining eight edges colored in red. For 

diffraction calculations, not only the edge itself is important but also position of the cuboid’s 
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planes (faces) creating the edge. In Figure 3 they are marked with arrows (vectors) and also 

with two red bands along each edge. 

 

Figure 3: Wall’s edges and side vectors 

In principle, a diffraction edge is only a line segments and not a vector. However, to 

properly define the edge’s diffraction angle (the angle formed by its adjacent faces) the 

sequence of both points and both side vectors is important, therefore we define edges as 

vectors. Looking in the direction along the edge vector (with the edge vector directed away 

from the observer, from P0 to P1 in Figure 4), the diffraction angle is defined as the angle 

from the first side vector (S0) to the second one (S1) measured in the right (clockwise) 

direction – right-hand (screw) rule, Figure 4. 

          

Figure 4: Diffraction edge angle definition 

The above eight edges of each wall (and also from any optional holes in the wall) are only 

candidates for diffraction edges. In the final scene, not all of them actually act as diffraction 

edges, so some additional edge-reduction procedure is required to reduce the complete set of 

edges to only those actually causing diffraction. This will be described in chapters 3 and 4. 
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3. Edge-only approach to edge reduction 

Figure 5 shows the diffraction edges (in red) as defined by the scene design editor (eight 

edges of each wall and each hole, as described previously). Not all of them actually cause 

diffraction. If diffraction is computed on all these edges, the computation time is increased, 

and the results are not accurate. Edges are shown as ‘L’ profiles, similarly as in Figure 3, but 

with a small displacement away from the edge for better visibility. When an edge of one wall 

aligns with a face of another wall, the ‘L’ shape is mostly buried inside the second wall, with 

only a small portion visible outside the wall as a red line. Traces of edges can also be seen on 

top of the table (created as a thin horizontal wall) in the large room since the table is thin 

enough for the displaced L shapes to just reach its surface. 

 

Figure 5: Eight long edges of each wall and hole as diffraction edges (in red) 

Figures 6 and 7 show redundant edges in more detail. Generally, redundant edges (that do 

not cause diffraction) fall into two categories: 

 Pairs of edges (theoretically also triplets, etc.), where edges of two cuboids (or 

theoretically more cuboids) are aligned and the resulting angle of the cuboids’ faces is 

≤ 180°. In Figures 5, 6 and 7, we can see such vertical edges with corresponding 

cuboid face angles of exactly 180°. 

 Cuboid edges that lie on a face of another cuboid (or possibly inside another cuboid – 

the existing scene editor application allows such design). Examples of such edges are 

horizontal edges of vertical walls on the floor and ceiling, and vertical edges in the 

corners of the rooms where a vertical wall connects to another wall, usually 

perpendicularly (see Figures 5, 6 and 7). 
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Figure 6: Redundant edges – enlarged view (some edges are visible only as thin red lines) 

 

Figure 7: Redundant edges – enlarged view 2 
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Figure 8 shows the result of edge reduction that can be achieved by the edge-only 

reduction algorithm together with some additional (pre- or post-) processing, as described 

later in this chapter. The additional processing removes redundant horizontal edges but it 

cannot remove vertical edges in the corners of vertical walls, which can still be seen in Figure 

8 as vertical red lines, as well as some other edges of this type.  

 

Figure 8: The result of edge-only approach reduction 

The edge-only algorithm processes only the interactions between the edges and ignores 

information about the walls forming the edges (specifically, the wall’s faces). This approach 

can eliminate many but not all of the non-diffraction edges. It can eliminate edges that are 

aligned to each other, but not those aligning with a face of another wall. 

We envisioned this approach as a simple first step, which would simplify the task for the 

second step algorithm removing the rest of redundant edges. As it turned out, this first step is 

not necessary, as the second algorithm can do the job of removing all non-diffraction edges 

with comparable complexity and efficiency (execution time). The developed algorithm, 

implementation and results for the edge-only approach are nevertheless presented in this 

chapter. 

In the following subsections, individual steps (implemented as C functions) of the edge-

only approach are described. The last subsection gives basic information about the 

implementation and an analysis of processing times. 

3.1. Remove top and bottom edges 

These two functions remove top-most and bottom-most (horizontal) edges. Both are 

executed twice. The first run removes external floor or ceiling edges, which are strictly 

speaking correct diffraction edges but irrelevant for radio propagation inside the flat. The 
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second run removes horizontal edges at the interior floor and ceiling levels, which do not 

cause diffraction. This two functions are very simple and fast, with computation complexity 

O(n) (where n is the number of edges) but are applicable only in simple cases with single-

level horizontal floors and ceilings. 

Figure 9 shows edges remaining after running these two functions twice: 

RemoveBottomEdges(); 

RemoveBottomEdges(); 

RemoveTopEdges(); 

RemoveTopEdges(); 

 

Figure 9: Edges after removal of two levels of top and bottom edges 

3.2. Edge subdivision 

This step is required before running the next step which actually performs edge reduction. 

Often, two edges overlap only partly due to their different lengths or a displacement (see 

Figure 7 for the first case). This function, SubdivideEdges(), subdivides edges to segments 

that completely coincide. Figure 10 shows how partly-overlapping edges must be subdivided 

before the next edge-reduction step. (Both edges are drawn with a small horizontal 

displacement for the sake of their visibility, but generally they are overlapping). 
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Figure 10: An example of subdivision of partly overlapping edges 

(coinciding, but shown with horizontal displacement for visibility) 

This subdivision is made pair-wise with one edge being the dividing edge and the other the 

divided edge. The computational complexity is O(n
2
). 

 A small mutual displacement of edges is actually allowed and supported – this is 

necessary to accommodate computational errors due to the limited computational precision 

(of the double floating point type), as well as minor scene design inaccuracies. Actually, any 

displacement much smaller than the radio signal wavelength can be considered unimportant 

and can be ignored. Similar tolerances are also used in other edge-reduction functions 

described in this document. A set of constants in the program specifies tolerances for various 

functions. These tolerances should actually be related to the radio signal wavelength, but in 

any case they should be larger than the computational errors caused by the limited 

computational precision. 

This procedure changes the edges (subdivides some edges to shorter segments) but this is 

not visible in the visualization, which remains the same as in Figure 9. 

3.3. Edge reduction 

This procedure removes multiple coinciding edges, assuming that they belong to walls 

aligned to each other and there is actually no diffraction edge at that location, as shown by an 

example in Figure 11. 

 

Figure 11: An example of edge reduction of partly overlapping edges  

(coinciding, but shown with horizontal displacement for visibility) 

Three versions of this functions have been developed, ReduceEdges1(), 

ReduceEdges2() and  ReduceEdges3(), with different level of complexity: 

Version 1 can remove pairs of coinciding edges. 

ed
ge

 1
ed

ge
 2
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Version 2 can remove multiple coinciding edges (pairs, triplets, etc.). 

Version 3 can remove multiple coinciding edges but does this conditionally, taking into 

account the angles of the corresponding planes (cuboids faces) forming these edges. This is 

illustrated in the following three figures, which show ground plans of two vertical walls, with 

their vertical edges shown as red dots. Two walls (shown in Figure 12) are normally aligned 

perpendicularly as shown in Figure 13. The edge-only edge-reduction algorithm (all three 

versions) would correctly remove edges 2 and 3 (as already mentioned, it is not able to 

remove edge 4).  

However, the scene design editor allows positioning a wall at a non-orthogonal angle and 

also overlapping with another wall (i.e. penetrating it). An example is shown in Figure 14. In 

this example, instead of removing both edges, version 3 correctly creates a single edge with 

its corresponding planes taken from both original edges. The implemented algorithm is able to 

correctly combine not only two but multiple walls placed obliquely to each other (with 

coinciding edges). 

Edge reduction is performed pair-wise, the algorithm’s computational complexity is O(n
2
). 

 

 

 

Figure 12: Two walls – ground plan 

 

Figure 13: Two walls, normally perpendicularly aligned 

1 2 3

4

1 2,3

4
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Figure 14: Two walls, aligned obliquely (overlapping) 

Since our test scene consists of perpendicularly placed walls only (and without 

overlapping), all three versions of the edge reduction algorithm give the same results. Figure 

15 shows edges remaining after running the following functions: 

RemoveBottomEdges(); 

RemoveBottomEdges(); 

RemoveTopEdges(); 

RemoveTopEdges(); 

SubdivideEdges(); 

ReduceEdges3(); 

 

Figure 15: Edge reduction with bottom & top preprocessing 

The removal of top and bottom edges could be performed after reduction (as 

postprocessing instead of preprocessing) with the same end result, but edge subdivision and 

reduction would then take longer due to a larger number of edges processed by these two 

steps (see Table 1). 

4

1 2,3
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Figure 16 shows the remaining edges in case that bottom and top edges are not removed, 

i.e. only the following two functions are executed: 

SubdivideEdges(); 

ReduceEdges3(); 

 

Figure 16: Edge reduction without bottom & top preprocessing 

3.4. Removing short edges 

A side effect of the described algorithms is that some short edges remain that should 

actually have been removed. One reason for this is that four short edges of each cuboid (those 

representing wall thickness) are not included as possible diffraction edges in the design. This 

results in unpaired subedges of coinciding edges not being removed. These subedges are of 

the size of wall thickness. Another reason is limited numerical precision, which can generate 

some very short edges (of the size of numerical errors). 

In this step, edges shorter than a predefined length (a constant in the program) are 

removed. This function is simple and fast, with computation complexity O(n). Figure 17 

shows remaining edges after the execution of the following sequence of functions: 

RemoveBottomEdges(); 

RemoveBottomEdges(); 

RemoveTopEdges(); 

RemoveTopEdges(); 

SubdivideEdges(); 

ReduceEdges3(); 

RemoveShortEdges(); 
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Figure 17: Final result, with bottom & top preprocessing 

In the above case, only six short edges on the bottom table surface have been removed. If 

the bottom and top edges removal were not performed, a much larger number of short edges 

would remain, mostly at the second top and bottom levels, and would be removed in this step. 

Figure 18 shows the results for this case, with only the following sequence of functions 

executed: 

SubdivideEdges(); 

ReduceEdges3(); 

RemoveShortEdges(); 
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Figure 18: Final result, without bottom & top preprocessing 

3.5. Cleaning up 

After removing edges in previous steps, some points and side vectors become redundant 

(unused). CleanupEdges() removes theses redundant data before the new reduced edge list 

file is written. Edges themselves remain unchanged. This function is fast with computation 

complexity of O(n). 

3.6. Implementation and processing times 

The complete processing consists of execution of the following chain of C functions: 

RemoveBottomEdges(); 

RemoveBottomEdges(); 

RemoveTopEdges(); 

RemoveTopEdges(); 

SubdivideEdges(); 

// ReduceEdges1(); 

// ReduceEdges2(); 

ReduceEdges3(); 

RemoveShortEdges(); 

CleanupEdges(); 

The edge-reduction algorithm does not use GPU but runs entirely on CPU as a single 

threaded process. Its source code (C++) can be compiled either as a ‘debug’ or a ‘release’ 

version, which vastly influences the execution times. Table 1 shows execution times of each 

previously described function for the ‘debug’ version with time resolution of 10 ms. Besides 

the execution times, the numbers of processed (input) edges are also given in the table. 
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CleanupEdges() does not change the number of edges, so its input number is also the final 

(output) number of edges after the edge reduction process has completed. 

Table 1: Execution times of edge-only edge reduction, ‘debug’ version 

 w/o RemoveBottom/TopEdges 

(execution time  / input edges) 

with RemoveBottom/TopEdges 

(execution time  / input edges) 

2x RemoveBottomEdges() – 2x 0.00s .. 0.01s / 612, 598 

2x RemoveTopEdges() – 2x 0.00s .. 0.01s / 474, 460 

SubdivideEdges() 2.19s / 612 0.89s / 398 

ReduceEdges1() 0.82s / 675 0.31s / 410 

ReduceEdges2() 0.93s / 675 0.34s / 410 

ReduceEdges3() 1.11s / 675 0.41s / 410 

RemoveShortEdges() 0.00s (<0.01s) / 543 0.00s (<0.01s) / 346 

CleanupEdges() 0.02s / 490 0.01s / 340 

 

The complete processing time is dominated by edge subdivision and reduction, with the 

resulting complexity of O(n
2
). 

Table 2 shows execution times for the ‘release’ version. The execution times are much 

shorter (about 50×) and cannot be precisely measured due to the limited time resolution. 

Table 2: Execution times of edge-only edge reduction, ‘release’ version 

 w/o RemoveBottom/TopEdges 

(execution time  / input edges) 

with RemoveBottom/TopEdges 

(execution time  / input edges) 

2x RemoveBottomEdges() – 2x 0.00s (<0.01s) (612, 598) 

2x RemoveTopEdges() – 2x 0.00s (<0.01s) (474, 460) 

SubdivideEdges() 0.04s (612) 0.02s (398) 

ReduceEdges1() 0.02s (675) 0.01s (410) 

ReduceEdges2() 0.02s (675) 0.01s (410) 

ReduceEdges3() 0.02s (675) 0.01s (410) 

RemoveShortEdges() 0.00s (<0.01s) (543) 0.00s (<0.01s) (346) 

CleanupEdges() 0.00s (490) 0.00s (<0.01s) (340) 
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4. Edge–wall approach to edge reduction 

The edge–wall approach to the diffraction edge reduction described in this chapter was 

first planned as a second step of the reduction process (following the edge-only approach 

from the previous chapter). However, the edge–wall approach offers a complete solution 

making the edge-only approach unnecessary. Although one might expect the edge–wall 

approach to be more complex, its actual implementation is rather simple and its execution 

comparably fast and efficient. It was implemented as a C++ class for inclusion into the scene 

editing application. The complete source code includes a new internal optional MATLAB-

based visualization and an optional demo (test) main program. 

4.1. ReduceEdges class – usage and data structures 

The ReduceEdges constructor, ReduceEdges::ReduceEdges( Scene *scene), does it 

all: it transforms the scene description data from the original data format to the ReduceEdges 

format and performs edge reduction. The final result, i.e. the reduced set of diffraction edges, 

can be found in its data structure described below (each edge is stored with the wall to which 

it belongs). 

All the walls are stored in a C++ vector (array) of walls. 

std::vector<re_Wall> re_walls; 

Each wall is a structure containing two C++ vectors (arrays): one for (rectangular) cuboids 

and one for (diffraction) edges. A simple wall without holes has exactly one cuboid and eight 

edges (the four short edges representing wall thickness are not included). Each wall’s hole is 

represented by an additional cuboid. In other words: the first cuboid in the C++ vector of 

cuboids represents a wall, while any additional cuboids represent holes in this wall.  

    struct re_Wall 

    { 

      std::vector<re_Cuboid> cuboids; 

      std::vector<re_Edge> edges; 

    }; 

Each cuboid is represented by an array of eight vertices, and array of six normalized (unit) 

vectors representing normals to its faces, directed outwards. This description is redundant but 

it is suitable for efficient further processing. Each coordinate is defined in 3D space with three 

double precision floating point values (x,y,z), using dvec3 type from GLM (OpenGL 

Mathematics) library. 

    struct re_Cuboid 

    { 

      glm::dvec3 p[8]; 

      glm::dvec3 n[6]; 

}; 

Each edge is described by two points, each defined in 3D space with three double precision 

floating point values (x,y,z). 

    struct re_Edge 

    { 

      glm::dvec3 p[2]; 

    }; 
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Visualization (MATLAB-based, see below) can be enabled at compile time. If enabled, 

MATLAB engine is started after edge reduction has been performed, and the scene with the 

resulting diffraction edges is drawn and displayed (see Figure 21) until the user presses the 

‘Return’ key. 

4.2. Visualization 

The edge–wall reducing approach has its own internal optional visualization implemented 

as part of its ReduceEdges class. Visualization is performed by MATLAB (which must be 

installed on the computer) using its ability to execute its statements directly from C++. The 

implemented visualization was tested with MATLAB version R2016b. Due to available 

libraries, visualization can only be linked and used with the ‘debug’ version of the program 

and not with the ‘release’ version. 

Visualization uses MATLAB’s ‘patches’ for drawing 3D polygons. Here, they are used to 

draw rectangular cuboids’ faces (in light blue color, see Figures 19 to 21). Unfortunately, 

there is no simple way to make openings (holes) to cuboids. Instead, openings are drawn as 

non-transparent cuboids in light gray color (see Figures below). 

For correct rendering, holes’ cuboids are made a little thicker than the wall (currently 

0,1 mm on each side, fixed in the code), so that their two main faces are located outside the 

wall. This thickening only happens when visualization is enabled. 

The following additional information is visualized (besides cuboid’s faces): 

 Diffraction edges in red color, with their endpoints marked with small red circles. 

 Cuboids faces’ normal vectors, normalized and scaled to the length of 0,5 m, 

positioned in the centers of faces and directed outwards. They are drawn as arrows in 

blue color.  

 Walls cuboids’ sequential numbers in black color, positioned in the center of cuboids. 

 Wall holes’ cuboids numbers in the form <wall_number>–<hole_local_number> in 

black color, positioned in the center of cuboids. 

 Edges’ numbers in the form <wall_number>–<edge_local_number> in red, drawn at 

the edges’ midpoints. 

Figure 19 shows non-transparent virtualization, which hides most of the important details. 

The ceiling could be removed to show the interior as in Figure 20, however openings (doors, 

windows) are non-transparent, and some important information would still be hidden (e.g. 

numbers located within the walls). (Figure 20 has actually been produced by completely 

omitting the ceiling also from the edge reduction process, which is why the horizontal edges 

of vertical walls at the celling level have not been removed.) 
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Figure 19: Non-transparent rendering 

 

Figure 20: Non-transparent rendering with ceiling removed from processing 

To avoid these visualization problems, drawings of patches can be performed partially 

transparently, as in Figure 21. A side effect is that MATLAB does not render wall openings 

consistently and with the correct color, but this is not really important for the intended test 

usage. 
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Figure 21: Partially transparent rendering 

4.3. Edge reduction algorithm 

The ReduceEdges constructor first loops through all the walls in the orginal data structure 

and transforms them to the ReduceEdges data structure (described above). This is a quick 

operation with O(n) complexity (n being either the number of walls, cuboids or edges – these 

numbers can be assumed to be mutually proportional for a given scene design complexity). 

Next, ReduceEdges subdivides all edges so that each edge segment lies entirely inside or 

outside of any cuboid (wall or hole). It does so by taking from each wall’s edge list every 

edge (including those resulting from holes), finding its intersections with surfaces of any 

cuboid (walls and their holes), and splitting the edge accordingly. It then checks all newly 

generated edge segments and remove those lying inside a wall (the first wall’s cuboid) and 

not inside any of the wall’s holes (the remaining wall’s cuboids). 

The computation complexity of this operation is O(n
2
). 

Figure 22 shows subdivision of an edge (belonging to an obliquely positioned overlapping 

wall not shown in the picture) to three segments as a result of intersections with another wall 

(the one displayed in the picture). The middle segment (located inside the displayed wall) is 

consequently removed. 
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Figure 22: Edge subdivision 

Some tolerances are necessary when testing if an edge lies (approximately) inside a wall or 

on its surface. This is currently accomplished by enlarging the wall’s cuboids and reducing 

the size of its openings’ cuboids for a small amount. The tolerances are necessary to 

accommodate not only the limited computational precision (double floating point) but also 

minor design inaccuracies. Any inaccuracies much smaller than the radio signal wavelength 

can be ignored. Allowed tolerances for various computations are defined as constants in the 

program and are currently set to 2 cm. 

4.4. Execution time 

The algorithm reduces the number of diffraction edges of the test scene (shown in previous 

Figures) from the original 616 to the final 304. (616 edges instead of 612 from Chapter 3 is 

due to additional four very short “phantom” edges generated by triangulation and included in 

the scene description XML file used in this chapter.) 

The edge reducing algorithm executes on a single CPU core and does not use GPU 

processing. The following execution times are for the reduction algorithm only, excluding the 

optional visualization part (which can only be used with the ‘debug’ version and not with the 

‘release’ version): 

 ‘release’ version: 0.05 s 

 ‘debug’ version: 2.54 s 

The overall computational complexity of the algorithm (excluding visualization part) is 

O(n
2
). 

 


