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Abstract—Indoor localization and positioning is of vital 

importance in numerous applications. In particular, in the case 

of emergency events, locating and tracking of the victims, 

objects and rescue personnel in harsh indoor environments is 

still challenging. In this paper, two different approaches for the 

obstruction detection inside the road tunnel are analysed. Both 

methods are based on the analysing channel impulse responses 

(CIRs). The first parametric approach tests the use of root 

mean squared signal delay spread to recognize the object in an 

empty tunnel. Because the recognition of additional objects in 

already occupied tunnel is unreliable, more complex machine 

learning approach is also tested. The convolutional neural 

network (CNN) classification model for the LoS/NLoS channel 

detection is able to detect the object in an empty tunnel with the 

accuracy of more than 90%, whereas the presented multiple 

objects scenarios can be successfully resolved in more than 

80%. 

Keywords— convolutional neural network, ray tracing, root 

mean squared delay spread, positioning in tunnels, ultra-wide 
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I. INTRODUCTION 

Information on people and device positions is essential for 
provisioning several future services and also required in many 
future and current applications. The precise, accurate and 
reliable self positioning and neighbouring object location 
estimation is vital for emerging autonomous driving. 
Currently positions of devices and people in emergency and 
unexpected events attract significant interest of the research 
community. Two classes of positioning approaches exist [1], 
namely active and passive approach. The active approach 
assumes an object with unknown position, i.e. agent, actively 
participating in positioning procedure, meaning either (i) it 
senses its environment and calculates its position based on 
past and current observation or (ii) it wears an active tag that 
transmits a signal which is received by spatially distributed 
anchors, i.e. devices with known location. Tag’s location is 
then estimated by observing the signal properties. Two well-
known systems which use the active position approach are 
GPS systems and positing of mobiles within the cellular radio 
network. On the other hand, in passive positioning approach 
no cooperation of agents in the positioning procedure is 
expected. Typical representatives of passive positioning make 
use of radar technology, camera systems and laser scanners 
[2]. The above approaches have several critical limitations, in 
particular limited performance in environments with low 
visibility, high cost, line of sight requirements between 

anchors and agents, and environment pollution with radar 
signal. 

In multipath radio environments the ultra-wide band 
(UWB) radio technology is often applied in short range 
communications due to its robustness to the multipath. 
Additionally, UWB technology has an ability to measure 
round trip delay for active indoor agent positioning. Several 
studies already improve the agent positioning by classifying 
radio links in line of sight (LoS) and non-LoS (NLoS) by 
processing channel impulse responses (CIR) [3]. The impact 
of mining machinery on CIR in multiple-input-multiple-
output (MIMO) UWB system was studied in [4]. In this paper 
we reverse the problem discussed in [4] and try to answer the 
question whether CIR can be applied to detect vehicles in 
tunnels. We assume tunnels equipped by wireless sensor 
networks employing UWB radio technology. The system can 
also be used to measure the environmental parameters such as 
temperature, humidity and air quality in order to control the 
tunnel ventilation system and traffic. In the case of an 
accident, with the smoke severely limiting the visibility of 
surveillance cameras, it is of high importance to detect the 
vehicle positions by some other form of passive localization. 

In this respect we run a measurement campaign in the 
tunnel used for firefighter trainings. The set of nodes based on 
Decawave DW1000 chipset was placed near the tunnel walls 
in zig-zag pattern, while the vehicles were placed in different 
positions along the tunnel. Two approaches were tested to 
detect vehicle position, one based on analysing the CIR 
observing RMS delay spread and the other one based on the 
machine learning algorithm. Two dataset are used to test 
algorithms, one obtained by measurement and the second one 
by computer simulations. 

The paper is organized as follows. After the introduction, 
two obstruction detection approaches analysed in the paper 
are described. In Section III measurement campaign is 
presented including the tunnel environment and measurement 
procedure. Simulation environment and scenarios are 
described in Section IV while the results of the proposed 
approaches are presented in Section V. Finally, concluding 
remarks including future work are given in Section VI.  

II. OBSTRUCTION DETECTION APPROACHES 

Vehicles located between transmitter and receiver affect 
the wireless channel due to possible blocking LoS, 
introducing additional scattering and reflection. In this paper 



a link represents a fixed radio transmitter and a fixed receiver, 
which estimates CIR, received signal strength, RMS delay 
spread, distance, and can detect LoS/NLoS channel condition. 
In order to determine in tunnel vehicle presence and possibly 
its location we tested two approaches. 

The first approach is based on analysing received signal 
RMS delay spread between the different Tx/Rx pairs mounted 
on the opposite sides of the tunnel. Widely accepted model of 
power delay profile is Saleh Valenzuela model [5]  

 ℎ𝑑𝑖𝑠𝑐𝑟(𝑡) = ∑ ∑ 𝑎𝑘,𝑙 exp(𝑗𝜙𝑘,𝑙)
𝐾
𝑘=0 𝛿(𝑡 − 𝑇𝑙 − 𝜏𝑘,𝑙)

𝐿
𝑙=0  

where ak,l is the tap weight of the k-th component in the l-th 
cluster, Tl is the delay of the l-th cluster, and τk,l is the delay of 
the k-th multipath component relative to the l-th cluster 

arrival time Tl. The phases k,l are uniformly distributed in the 

range [0,2]. The model assumes rays arriving to the receiver 
in clusters and each cluster consisting of several multiple 
components. In [6] the parameters for different indoor radio 
environment for UWB radio technology were published, but 
not for communications in tunnels. Analysing the decay of 
the average energy in cluster, and decay of energy per cluster 
the LoS and NLoS condition can be detected. The start and 
the end of each cluster have to be found, which is challenging 
in highly scattering environments [7]. In this study we applied 
more common approach which is based on observation of 

RMS delay spread  
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to estimate vehicle presence. We hypothesized that a vehicle 
in the tunnel will increase the delay spread due to multiple 
reflection and signal blocking. 

In the second approach the convolutional neural network 
(CNN) based classification model for LoS/NLoS channel 
detection was used [8]. Since the pulse based physical layer 
allows efficient measurement of the CIR, significantly larger 
information-rich content can be collected in comparison to 
what can be obtained by measuring only several channel 
parameters. The CNN is used due to ability to learn complex 
models and superior input shift invariance which omits the 
need for input data pre-processing and deriving low-
dimensional input vectors from CIR. The CNN structure is 
implemented using Keras with TensorFlow [9] backend, an 
open source neural network library and open source library 
for numerical computation using data flow graphs, 
respectively. CNNs are fed by 1-dimensionnal input traces in 
the form of measured and simulated CIR data.  

In the first step the CNN are trained by 
measured/simulated data using predefined subset of data. CIR 
measured by DW1000 UWB has 992 bins for the 16 MHz 
pulse repetition frequency (PRF) and 1016 samples for the 
64 MHz PRF with a resolution of approximately 1 ns (1/2 of 
the 499.2 MHz period). Since 152 bins in each CIR hold most 
of the information regarding the environment propagation 

characteristics, they were used during the learning and 
classification process. 

In the second step the model performance in the sense of 
the vehicle presence detection based on NLoS/LoS 
classification was evaluated. Thus, some standard metrics 
based on confusion matrix were calculated [10]. Four 
categories of the resulting assignment exists, namely; true 
positive (TP), true negative (TN), false positive (FP) and false 
negative (FN). Performance metrics applied for the results 
evaluation are (i) accuracy which provides the percentage of 
correctly classified instances ((TP+TN)/(TP+TN+FP+FN)), 
(ii) precision (per-class) which for example represents the 
percentage of correctly classified NLoS instances within all 
the instances that were classified as NLoS instances 
(TP/(TP+FP)) or opposite for LoS and (iii) recall as a true 
positive rate (per-class) or a fraction of correctly classified 
instances within the NLoS or LoS class (TP/(TP+FN)). 

III. MEASUREMENT CAMPAIGN 

The UWB channel characteristics were investigated by 
CIR measurements in a tunnel built for training of 
firefighters. For the wide-band channel measurements the 
IEEE 802.15.4 compliant UWB chipset from DecaWave was 
used. 

A. Environment 

A slightly curved training tunnel is located in the training 
centre for civil protection and disaster relief in Ig, Slovenia. 
The tunnel construction, shape and the dimensions are 
depicted in Fig 1. The slightly bended tunnel is 30 m long, 
has an arch cross section and is 9.6 m wide and 6.6 m high. 
The floor is asphalted while the walls consists of reinforced 
concrete up to the 1.6 m height and the rest of the arch is of 
iron sheet metal. The last section of the tunnel was occupied 
by the wreckage of a bus, a truck and a van which enables 
studying of UWB channel characteristic in real emergency 
situations.  

3,85 m 3,85 m0.95 m 0.95 m
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Fig. 1. Tunnel construction and cross-section dimensions  

B. Measurement procedure 

The measurement system is comprised of eight DecaWave 
DW1000 UWB pulse radios [11] with a firmware supporting 
fast measurement acquisition and enabling flexibility in 
experimental environment. UWB radios were mounted on the 
concrete walls, four on each side of the tunnel. The photo of 
the measurement setup together with the Tx/Rx positions and 
distance between them are depicted in Fig 2. In order to 
detect the vehicles of different size the nodes were mounted 
1.3 m above the ground. The distance between nodes on the 



same side was set to 7 m while the distances between adjacent 
nodes across the tunnel vary due to the tunnel bend.  

The CIR measurements were performed among all eight 
nodes on all 6 available channels [11] with preamble length 
of 1024 symbols and pulse repetition frequency of 64 MHz. 
In order to enable communication also among the farthest 
nodes the Tx amplifier gain was set to 33.5 dB.  
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Fig. 2. Measurement setup; a) photo at the location and b) Tx/Rx positions 

with moving car and motionless bus 

In the first step the measurements were performed only 
with the wrecks located in the last part of the tunnel. In order 
to analyse the presence of the vehicles in the tunnel we add 
18 scenarios with a car (4.2 m long, 1.8 m wide and 1.5 m 
high) moving along the tunnel by 1 m steps. We run 12 
measurements between two nodes for each channel settings at 
each car position. In the configuration with 8 nodes 56 
omnidirectional links exist and thus more than 80.000 
measurements were captured for 20 tested scenarios. 

IV. SIMULATION ENVIRONMENT AND SCENARIOS 

Accurate channel modelling with the ability of predicting 
CIR requires the use of physical models. When accompanied 
with detailed knowledge of the environment geometry, 
advanced RF ray-tracing techniques can take into account the 
majority of paths the real wave-front would traverse and 
model actual physical phenomena responsible for propagation 
of electromagnetic waves. Advanced channel characteristics, 
including CIR can be calculated from multipath traces, which 
are not readily available in pure statistical propagation 
predictions. 

A. Ray tracing simulator 

Our in-house radio frequency ray tracing tool based on the 
brute force shooting and bouncing rays was used to simulate 
CIR. The simulator has already been proven in several 
projects with telecommunication industry in indoor and 
outdoor scenarios [3]. However, tunnel environment is 
specific due to curved surfaces and some compromises such 
as the use of segmented walls had to be done in scenario 
description. 

Full 3D simulator effectively traces a large number of rays 
from the transmitting source in all directions into the scene. 
The initial set of launched rays needs to be separated 
uniformly by icosahedral grids. Using geometrical optics 

concepts in describing radio frequency propagation implies 
that initial rays are an abstraction of a single wave-front 
spreading into space. Subsequent electromagnetic interactions 
with matter initiate new wave-fronts, described by another 
sets of reflected, refracted, diffracted or scattered rays. The 
signal evaluation at given observation point combines these 
wave-fronts freely, in the same way as if they are being 
transmitted by multiple independent sources.  

Reflection and refraction phenomena on the boundaries 
between propagation media are modelled using Fresnel 
equations for electric and magnetic field amplitudes while 
edge diffraction modelling is done using the geometrical 
theory of diffraction [12]. The simulator detects a ray close to 
a reception point and thus a wave-front by introducing a 
sphere object with variable non-zero radius and by inspecting 
the intersecting rays. Bloom filtering [13] is used to select 
unique wave-fronts. Further, the antenna patterns, the 
attenuation caused by the propagation through material as 
well as the signal spreading loss needed to be accounted for. 
Multipath components of a narrowband impulse response are 
thus readily available as delayed signal phasors. 

Simulated CIR is modelled as a sum of time-varying 
number of multipath components in a tap-delayed linear filter 
and may be formulated as 

 ℎ(𝜏) = ∑ 𝛼𝑖𝛿(𝜏 − 𝜏𝑖)
𝐿
𝑖=1 , 

where each of L taps represents a multipath component of 

polarity sign-extended () real amplitude α, multiplied by 
time delayed Dirac-Delta function. The depth of simulation, 
i.e., the number of interactions each ray is allowed to 
encounter, was set to 30. Only reflections were simulated 
because most of surfaces are made of metal or steel-
reinforced concrete. Allowing up to 150 dB signal loss per 
multipath component and initially launching 671 million rays, 
a single simulation typically took 10 minutes to complete. 

B. Simulation specifics 

Computing h() by ray tracing is not as straightforward 
because ray paths, amplitudes and propagation delays are 
functions of frequency. Ray-tracing evaluates signal at a 
single frequency, thus computing only narrowband CIR valid 
for a bandwidth limited transmission. Sub-band divided ray 
tracing has been proposed in [14] to fully evaluate (3). The 
method involves multiple simulation runs for a number of 
centre frequencies of complementary sub-bands. These 
narrowband CIRs are then combined together in frequency 
space. Inverse Fourier transform gives the final CIR over 
wider bandwidth. However, simulations were not expected to 
reproduce measured CIRs with high accuracy due to the 
discrepancies between the model and reality (tunnel 
curvature, presence of metal columns, use of corrugated sheet 
metal, insufficient car details modelling). Therefore, we only 
simulate narrowband CIRs at 3993.6 MHz centre frequency 
of the impulse radio. 

C. Simulated scenarios 

Narrowband CIRs were computed for 16 combinations of 
Rx/Tx pairs and 18 car locations. The tunnel geometry, the 



transmission and reception points as well as car route are 
presented in Fig 2b). Motionless bus was placed at the end of 
a tunnel. The tunnel curvature was approximated by flat 
patches. Most of the patches are made of metal with the 
lowest arc segments and ground plane assumed to have 

electric properties of steel-reinforced concrete (r=9, r=1, 

=0.09 S/m) and asphalt mixture (r=5.7, r=1, =0.0005 
S/m), respectively. Both, the transmission and the reception 
were simulated assuming ideal vertically oriented dipole 
antennas.  

V. VEHICLE POSITION ESTIMATION BY SIMULATED AND 

MEASURED CIR 

Proposed approaches are based on CIR which holds RMS 
delay information and enables machine learning NLoS link 
classification. Fig. 3 clearly shows the difference between the 
LoS CIR for link A1-A2 (car at 0 m) and NLoS channel state 
for the same link with a car 4 m intothe tunnel. 

 

Fig. 3. CIR Los/NLoS comparission 

A. Root mean squared (RMS) delay spread approach 

The median RMS delay spread as a function of vehicle 
position is plotted in Fig 4. Median RMS delay spread was 
estimated from 72 RMS delay spreads calculated from 12 
CIR measurements at 6 different UWB channels per each 
radio link. The RMS delay spread increases, if the vehicle 
fully blocks line of sight condition between nodes and there is 
no other vehicle nearby, for example curves A1-A2 and A1-
A4. However, if other objects are located close to the vehicle, 
its presence in the tunnel is not easy to identify, i.e. curves 
A1-A6 and A1-A8. We also found that the tunnel curvature 
brings additional increase in the RMS delay spread, which 
significantly limits the applicability of RMS delay spread for 
vehicle presence identification. 

B. NLOS link classification 

LoS/NLoS link classification is the first machine learning 
approach for vehicle detection. If there an obstruction in the 
first Fresnel zone, the link is marked as NLoS link, while if 
there is not the link is marked as LoS link.  

Classification algorithm was implemented using machine 
learning libraries Keras, TensorFlow and scikit-learn. A 
convolutional neural network (CNN) with the following 
structure was constructed: 3 convolutional layers, pooling 
layer, 2 convolutional layers, pooling layer, fully-connected 

layer with dropout regularization and readout layer with 
softmax activation. ReLu activation function was selected as 
a general activation function for all neurons since their good 
influence on the training performance and convergence. 
Batch regularization was also used to prevent the excessive 
local build-ups of weights and Adam optimization algorithm 
with the initial learning rate η=0.0001 because of the good 
overall performance on various types of problems. 

 

Fig. 4. Mean RMS delay dependence on vehicle position 

To properly evaluate the model performance, 9-fold cross-
validation approach was selected. There are 9 training and 
validation sets, where in each set 2 neighbouring car positions 
were selected as a validation set. Validation car positions are 
presented in Table II and IV. Input to the CNN classifier is a 
raw CIR data extracted from the full CIR accumulator on a 
DW1000 UWB radio. Input sample was created cutting the 
CIR from the start marker (identified with algorithm inside 
radio) to the maximum excess delay of 152.244 ns. 

TABLE I.  CLASSIFICATION PERFORMANCE OF REAL MEASUREMENTS 

AND SIMULATED SAMPLES 

  Accuracy [%] Precision [%] Recall [%] Sample 

Measured 
LOS 

92.1 
85.4 93.0 1250 

NLOS 96.1 91.7 2386 

Simulated 
LOS 

95.8 
95.3 96.6 75 

NLOS 96.4 95.0 69 

TABLE II.  CLASSIFICATION PERFORMANCE FOR INDIVIDUAL VEHICLE 

POSITIONS 

Accuracy [%] 
0-

1m 

2-

3m 

4-

5m 

6-

7m 

8-

9m 

10-

11m 

12-

13m 

14-

15m 

16-

17m 

Measured 96 87.6 93.9 93.9 91.2 94.8 93.9 92.1 85.5 

Simulated 100 93.8 93.8 93.8 96.9 96.9 94.8 96.9 96.9 

Table I and Table II present the NLoS classification 
results. In Table I the general classification performance is 
presented with general classification accuracy for simulated 
and measured data, respectively. For each class (LoS or 
NLoS) there are precision and recall performances with the 
supporting number of samples for the corresponding test. In 
Table II the evaluation of individual validation folds is 
presented in a form of per-validation folds accuracies. 
Classification results show that machine learning approach 
for NLoS classification with CNN works as a very reliable 
NLoS detector in both simulated and measurement-based 
cases.  



C. Vehicle presence detection 

As we want to detect the vehicles regardless if there are 
other signal obstructions in the tunnel, we changed the 
LoS/NLoS information into the vehicle presence information 
(NPRES/PRES) for the second machine learning approach. In 
this case we assume the scattering from the vehicle can be 
distinguished from scattering caused by other object. Links 
with a moving vehicle on a direct path between the 
transmitter and the receiver were marked as PRES and all 
other links as NPRES. 

TABLE III.  VEHICLE PRESENCE CLASSIFICATION PERFORMANCE 

  Accuracy [%] Precision [%] Recall [%] Sample 

Measured 
NPRES 

79.3 
81.8 91.3 2552 

PRES 69.8 49.7 1084 

Simulated 
NPRES 

77.0 
69.1 99.3 107 

PRES 98.7 53.9 37 

TABLE IV.  VEHICLE PRESENCE CLASSIFICATION PERFORMANCE FOR 

INDIVIDUAL VEHICLE POSITIONS 

Accuracy [%] 
0-

1m 

2-

3m 

4-

5m 

6-

7m 

8-

9m 

10-

11m 

12-

13m 

14-

15m 

16-

17m 

Measured 92.3 86.8 81.4 77.9 67.8 75.4 79.8 80.5 71.9 

Simulated 71.0 75.0 75.0 75.0 75.0 75.0 75.0 81.3 90.6 

We repeated the general classification performance and 
per-position performance tests. General classification 
performance is presented in Table III. The classification 
performance based on the measurements is compared to the 
classification performance of simulated samples. The 
simulations are not affected by the measurement noise and 
give slightly better results. Despite that the simulated 
approach being better than measurement-based approach the 
approach with vehicle detection on links in already occupied 
tunnel works very unreliable according to the results in 
Table IV. To improve the performance of vehicle detection in 
a tunnel, approach detecting the vehicle presence in a sector 
of a tunnel based on a CIR data from many radio links should 
be used instead of a sole presence on a link. 

VI. CONCLUSION 

In this paper we try to identify vehicle position in a tunnel 
analysing the CIR measured by UWB communication 
technology. We placed the wireless sensors on a zig-zag 
pattern along the curved tunnel built for firefighters training. 
We tested two approaches, namely the first one observing 
RMS delay spread, and the second one based on machine 
learning approach. The results revealed that the method based 
on analysing RMS delay spread can detect the vehicle in the 
tunnel if there are no additional scatterers located along the 
path between transmitter and receiver, or nearby the 
transmitter or receiver. The method can be improved by 
analysing the decay of inter and intra cluster components. 
While using machine learning approach the results for 
classification the link as LoS and NLoS gives excellent 
results in terms of accuracy, precision and recall, meaning 
LoS and NLoS approach can be applied for detection of a 
single vehicle in a tunnel. However, when we try to detect 
vehicle at the presence of the wrecks, which also blocks the 

LoS channel the results are not so convincing. The similar 
results are obtained by processing simulated and measured 
CIR. In order to detect the car presence nearby the wrecks the 
training samples have to be chosen to reflect three cases, 
namely empty tunnel, vehicle in the tunnel and vehicle in the 
tunnel close to the wrecks.  
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